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Foreword

This is part I of the final technical report for Contract No. N62269-
76-C-0378, which is sponsored by the Naval Air Development Center, Warminster,
Pa. The work was performed during the period of July 1, 1976 through
December 30, 1977. Mr. Lee W. Gause was the contract monitor.

The contracted study is under the title "Certification of Composite
Aircraft Structures under Impact, Fatigue and Environmental Conditions";
parts I and II of the study are under the supervision of Dr. P.C. Chou, while
part IIT is under Dr. A.S.D. Wang, both of Drexel University.

This report concerns part I of the contract, low speed impact of plates
of composite materials. It is a self-contained report, including definitions
of all nomenclature used, and its own introduction and conclusions.

The authors would like to thank Dr. Edward J. McQuillen, Dr. James L.
Huang and Mr. Lee W. Gause for the frequent technical discussions. They
would also like to thank Mr. Frank Patota and Mr. George Chou who helped
conducting part of the experiments.
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I. INTRODUCTION

Aerospace structures frequently undergo impacts by blunt objects, in-
cluding dropped tools, hail, and runway stones impinging on exposed aircraft
components, ahd foreign objeéts entering jet engines. The failure of a
component subject to such an impact is often of the structural type, rather
than due to local penetration or indentation. A number of numerical techniques
(e.g., finitelélement’method, lﬁmped—parameter modéls) are available for calcu-
lating structural response to impact, but these are typically complicated,
time-consuming, and usable only on a problem-by-problem basis. Designers need
a quick, convenient, Widély applicable method for this purpose.

In a previous report [1], a method was developed for constructing a de-
sign curve which predicts the response of a given type of structure to.impact
loading. Tﬂis curve gives the maximum strain in the structure, which may have
various dimensions and material properties, due to impacts involving a certain
range of impact masses and velocities. An example of the bending response of
a simply supported beam under central impact was presented .in detail. Both
experimental results and numerical calculations involving several solutions
of beam impact were used in establishing the design curve. The impact cases
studied in [1] were limited to large impactor mass, where the impactor has
mass roughly equal to or greater than that of the beam.

In the present report, the design-curve approach is extended to anisotropic
plates, and impacts by small impactors. Shear failures are also studied. The
elementary model of impact on beams presented in [1] is generalized to embrace

all structures. .This model is then applied to the cases of clamped and
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simply supported anisotropic rectangular plates and to predicting impact

failure due to shear effects in both beams and plates. Design curves are
also developed for predicting the response of beams and plates to impact

by small impactors. In each instance, both analytical methods and impact
experiments are employed in generating the design curves.

In dealing with low-velocity impact problems, it is convenient to divide
them into two domains, based on the ratio M of the mass of the structure to
the mass of the impactor (see Fig. 1). The motion of the impactor and the
response of the structure for a large impactor differ greatly from those for a
small impactor. The two domains will be treated separately; the assumptions
and final design curves are also different for the two domains.

In impacts where the mass ratio M is small (large impactor), it has
been observed that multiple collisions occur and that the general motion of

the impactor follows the path of the structure at the impact point (Fig. la).

The final rebound of the impactor takes place after the structure has reached

its maximum deflection. Further, the entire event is generally more pro- i

longed than the fundamental period of structural vibration.
On the other hand, when M is large (small impactor), only a single,
sudden collision occurs, after which the impactor’rebounds and the structure
continues to vibrate freely, reaching its maximum deflection at a later time
(Fig. 1b). The duration of actual contact is characteristically much shorter
than the fundamental period of vibration. The sudden rebound of the impactor
|

is due chiefly to the elastic resistance of the structure and the impactor

to local indentation, i.e., contact effects between the two bodies.



-
4

NADC-/8259 ¢

-soseo Io03oeduI-TTeWsS pue -a8ae[ JO uostaedwo)

2AN30NaA3s

*1 °2an3T4g

Yo

Jo poraad Tejuswepuny = ﬁH
O
» HOLOVAW] TIVWS
o
\
S-S sy
m { | ()
=
m
=
2 f
aWIL W\ o
ez ¥ o
\
7 A
/ \
¥ &
JUOWOORTASTP J0JOBAU] wme v oot weem
UOTIOSTIOP [BIANIONIIS e %
o ;
= YOLOVdW] 390dV]
2
= X . 3 (®)
: } |
N mn
=
N O
\
\Y

”~
”

\
Y

SAWISFY 1IVdWI




NADC-7€259 60

In [1], six analytical models of impact were examined, including two
classical one-degree-of-freedom models; a two-degrees-of-freedom model which
accounts for contact effects; a solution by Clebsch [2], which assumes plastic
impact and treats the beam with attached impactor as a free-vibration problem;
a modified Clebsch solution due to McQuillen et al. [3]; and Timoshenko's
solution [4], which couples the impactor displacement with the beam deflection
using Hertz's law for contact deformations. The diménsionless parameters
which determine the peak impact response according to each solution method
were derived. i

It was shown in [1] that, for those models which neglect contact effects,
the maximum strain due to impact, when properly normalized to E, is a function
of the mass ratio M only and is independent of any other parameters. These
solution methods, however, are generally not suited for treating problems
involving small impactors. Conversely, the two models that inqlude contact
effects indicate a dependence of € on M and another parameter,.and are useful
over the entire range of M. For large impaétors, it was demonstrated that the
dependence on the other parameter is weak, so that a single € vs. M curve
approximately represents all impact situations. In addition, when data from
assorted impact experiments were plotted in coordinates of e and M, a single

curve could be drawn through all data points, with about + 30% variation, for

large impactors.
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In this report, several approaches are taken in extending the design-
curve concept to impacts of other structures by large impactors (Section II).
First, the one-degree-of-freedom model described in [1] is generalized to
encompass all structures and is then applied to anisotropic laminated rectang-
ular plates with clamped and simply supported boundary conditions. Then, in
order to identify additional significant parameters, the structural impact
equations of Timosbenko are cast in a dimensionless form; the influence of
each of these parameters is appraised by a series of calculations using
Timoshenko's solution in which the values of the parameters are systematically
varied. Next, we discuss two series of impact experiments performed on lam-
inated graphite /epoxy plates; in one series, the bending strains in the plates
were measured, and in the other; the plates were repeatedly impacted at grad-
ually increasing velécities until failure occurred. The purpose of these ex-
periments is twofold: to verify the analytically constructed design curves, and
to demonstrate how design curves may also be constructed experimentally. Finally,
design curves for predicting shear failure due to impact are developed, and
the relative importance of shear and bending effects in impact failure is dis-
cussed.

For cases in which the mass of the impactor is small with respect to the
mass of the structure (large M), the dependence of the generalized strain €
on the massvratiq M is not‘exclusive;‘another dimensionless parameter which
involves thé geometricvand material properties governing the contact effects
between the two bodies can also be shown to be significant. This contact
parameter, deno;ed A, and the mass ratio M together determine the duration of
contact between the structure and impactor (relative to the fundamental period
of vibration),'which is typically quite short. Clearly, the duration of contact

is important in determining the response of the structure.

5~,
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The most sophisticated solution method applicable to problems involving

small impactors, the Timoshenko solution, involves a nonlinear integral
equation which can only be solved numerically on a problem~by-problem basis,
and is thus not convenient for developing a design curve. However, by making
the simplifying assumption that the structure does not appreciably deflect
during the short period of actual contact, the problem uncouples into two
parts -~ the elastic Hertzian impact of a sphere on a semi-infinite body, and

the vibration response of the structure to a dynamic load (i.e., the contact

‘n

force). This leads to an approximate relationship (for each type of structure)

L}
e it st Bt i il vt i s s Nt it B ol e . i

between the parameters e, M, and X, which méy be further simplified to a
simple equation in the mass ratio M and a new generalized strain for small
impactors e* (Section III). By comparison with experimental data and with

calculations involving the complete Timoshenko solution, the form of this re-

e ol P

lationship is shown to be useful as a design guide.
In Section IV, procedures for using the design curves presented in this
report are described, and a few examples are given. Also included are methods

for constructing new design curves for structures not treated in this report,

based on either analytical tools or impact experiments.
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II. DESIGN CURVE FOR IMPACTS BY LARGE IMPACTORS

For impact cases where the mass of the structure is small compared to
the mass of the impactor, the structure may be assumed to behave as a simple
spring, or as a one—degree-df—fréedom mass-spring system. Details of this
approach as applied to simply supported beams were presented in Ref.[1]; in
this section, this impact model is briefly reviewed, because it will be useful
in the development of parameters in plate impact problems. These parameters
are employed in constructing a design curve for predicting the response of
plates to impacts by large masses. Finally, by examining data from a large
number of experiments and by studying impact solutions using more sophisticated
analytical techniques, the validity of the design curve ié established and the
range of its usefulness is demonstrated.

A, Generalized One-Degree-of-Freedom Model

In this model, the impactor and the structure are considered attached to-
gether after contact>and move together as a single mass m, and the motion of
the structure is‘governed by an equivalent spring. The initial velocity of
the combined mass, Ve may be determined by two methods: One is based on
the conservation of momentum (Fig. 2), the other on the conservation of energy
(Fig. 3). In the first case.

m=m, + em (1)

where m, is the impactor mass, and em, is an "equivalent" mass of the structure.
The equivalent mass may be obtained by matching the total kinetic energy of the
structure with the kinetic energy of the unknown equivalent mass traveling at the

"~ .velocity of the impact point in the structure, assuming that the deflection mode .

shape is the static deflection curve.. For simply supported beams,
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e = 17/35. By equating the momentum of the impactor before impact, m, v,
with the momentum of the combined mass m, we have
v/ (1 + eM). (2)

3

Yo

where ml/mz-
Note that according to-Eq. (2), the energy before and after impact is not
. 2 |

conserved, i.e., mvo <-m2v .

In the energy conserved case, we assumere”= 0, so that

m = m,
. Vg =V (4)

As a result, the kinetic energy in the impactor is conserved, and will be
entirely converted to strain energy in the structure. For small values of
M, the difference between these two approaches is small.

The spring constant Kl is the force per unit deflection, with respect

to a force acting at the impact point in the direction of the impactor

velocity, or

After acquiring the initial velocity Vos the mass-spring system is assumed
to perform a free vibration. The maximum deflection is then

= _m
1,max Vo \[k] (5)

In modeling the structure by a mass-spring system, it is implied that only
the first mode of vibration is retained and that its mode shape is the same
as the static deflection distribution under a concentrated force.
Next, we shall consider the most critical strain €,y in the structure which
occurs at a known point 2. Assume that a proportional relation between 52 and

w, can be found,

1
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€y = (dié Vi (6)

where d12 can be determined from the static deflection distribution, or from
experimental static measurements. Combining Eqs. (5) and (6), we obtain the

maximum strain as

€ = 0\l @)
Zax 412 JKl

or, combining Eqs. (1), (2), and (7),

v m2
€ = (8)
Zmax dlZ (l+eM)K1

1. Simply Supported Beam

The next step of defining a generalized strain € is best illustrated by
considering a specific type of structure. For a simply supported beam of
length L and depth h, impacted at middle span, we have
2
d12 = L“/6h 9)

and 3’
48EI/L” . (10)

&

-vh /.31 1
€max ~ S k \ 4 M(1+eM) (11)

where ¢, = VE/p, the velocity of longitudinal waves in a bar.

Therefore,

Defining the generalized strain as

c
i bk
€= e o v h (12)
we obtain finally,
L I R S
€= ,\ 4 M(1+el) (13

which is the equation of the design curve for simply supported beams impacted

by large masses, as given in [1].

10
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The corresponding expressions for d12’ Kl and € for simply supported

and clamped orthotropic plates will be given in the following sections.

2. Simply Supported Plate

The impact design curve for simply supported, rectangular,
orthotropic plates may be generated by applying the generalized one-degree-
of-freedom model. For transverse impacts at the center of the piate, we first’
consider the corresponding static problem involving a centrally applie& con-
centrated load. In this case, the maximum deflection occurs at the center of
the plate, and the maximum strain on the surface opposite the applied load.
It is shown in Appendix A that subject to a mild approximation, the spring

constant of a plate so loaded may be expressed as

4

m D .

¢ =P 1L | (14)

1 Vmax 4ab {2 £ (n)

| \b) "1
where

NI I - (15)

m=1,3,5 n=1,3,5 mn

2 D
n = (—,‘j-) <2 (16)
11
4 2 2 42 ’

Cmn =m + 2mn“n -+ nn (17)

The strain-deflection constant d12 relating the strain due to bending in

- the x~-direction to the maximum defléction LAY is
2
€ 1 7“h fz(n)
el — (18)
1 Y2 2w (F)fl(n)

11
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where
[ o0 m2
£,(n) = ] T (19)
m=1,3,5 n=1,3,5 “mn
By combining Eqs. (14) and (18) with Eq. (8), and assuming that e = 0
(conservation of energy), we obtain }
1/2 £,(n)
h hv 2
3 = £ (n) hv| —L2 = (20)
If we define tﬁe generalized strain Ex as N
sC
e = ey (th (21) |
max
where-cp = Vﬁll/I is the speed of flexural waves in the plate in the
x-direction, and k is the radius of gyration of the plate, then,
- g
S (L) (22) !
* 9Yu
where
g,(n) = £,(n)/VE; (n) (23)
This function is plotted in Fig. 4. Similarly, we have
-1
(n ™)
- RN (24)
y M

Equations (22) and (24) may be plotted as impact design .curves, aSVShOWn
in Fig. 6. Note that in this case, the generalized strains Ex and Ey
are functions not only of the structure-to-impactor mass ratio M but also

of the aspect-orthotropy ratio n.

3. Clamped Platev

We may develop the design curve for clamped-edge, rectangular,

orthotropic plates in a similar manner. The spring constant of such a plate

P

with respect to a central point load may be exbressed approximately (see

12
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Appendix B) as

' bD

a® £,

The strain-deflection constant d12 relating the strain in the x-direction with

the maximum deflection is

4 =12_f3(n)‘
) . 2° 1w Em | (26)
‘ where f3(n) and f,(n) are given in Appendix B. ’
‘ By combining Eqs. (25) and (26) with Eq. (8), and assuming that e = 0

4 (conservation of energy), and defining the generalized strain according to Eq. (21)

we obtain

(n)
s - 2 27)
| x M
r where
gy (M) = £ ()//E;n) (28)
" o
This function is also plotted in Fig. 4. Similarly, we have
-1
g,(n )
s =2 (29)
y M
Equations (27) and (29) represent the impact design curves for a clamped
rectangular plate. Again, the generalized strains Ex and Ey are functions
. of both the mass ratio M and the aspect-orthotropy ratio n.
4. Comprehensive Impact Strain Curve
. Examination of the design-curve equations developed above, Egs. (22),

(24), (27), and (29), shows that a different Ex vs. M curve must be prepared
not only for each boundary condition but also for each value of the aspect-
orthotropy parameter n. These curves can be combined into a single, com-

prehensive design curve if we introduce a new dimensionless generalized

13
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strain, €, defined as

€
X

gi(n) , 1= 1,2 (30)

€
where gl(n) applies to simply supported plates and is given by Eq. (23) and

gz(n) applies to clamped plates and is given by Eq. (28). Thus, the
equation for the design curve in € vs. M coordinates becomes
e =2 (31)
All impact data, regardless of the boundary condition (simply supported or clamped)
or the value of the parameter n may be presented on a single curve. This

curve is shown in Fig. 5, in which are included data from numerous impact

experiments which are discussed in detail in a later section.

5. Critical Impact Velocity Curve

The design curves in terms of Ex or :=vs M give the maximum strain in the
plate fbr a given impact situation. This strain may be compared to the
ultimate failure strain of the plate (assuming a maximum-strain failure
criterion) to determine whether the plate fails as a result of a given impact.
However, by introducing a new parameter, the dimensionless impact velocity,
we can construct an alternate form of the design curve which can be directly
used to determine whether a given impact causes failure of the plate. Again,
the curve may be developed either by analysis or by experiment. To do this,

a dimensionless impact velocity, 3, is defined as

vh

¢ k
P

where v is the impact velocity, h is the plate thickness, cp is the speed of

v = (32)

flexural waves in the plate, and k is the radius of gyration of the plate.
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Then, by Eq's (21), (22) and (32) the critical dimensionless velocity~;cv

(i.e., the lowest value of v at which failure occurs) is related to the failure

strain €s by

v = € (33)

In v vs. M coordinates, the curve v = GC(M) divides the plane into a safe
region (below the curve) in which failures due to impact do not occur (according
to the assumed maximum-strain failure criterion) and an unsafe region (above
the curve) in which failures do occur. That is, if the point (;,M) corresponding
to a given impact situation falls above the curve, then failure occurs; if
the point falls below, no failure occurs. Thus, Eq. (33) is useful as a de-
sign curve equation. A typical ;c vs. M curve is shown in Fig. 12,

Further, if we define a new dimensionléss impact velocity ::such that

v = g, () v
then the equation of the alternate design curve, in terms of ::vs. M, is

:L =& M | (34)

This single curve, v = 3;(M), may be used to predict impact-induced failure
for all plate structures, regardless of the boundary conditions or the value
of the aspect-orthotropy ratio n (provided these structures have the same
value of failure strain ef). Note that the value of € can be taken as the
nominal value (say, the static ultimate étrain) of the given material or can
be determined by performing a single impact-to-failure test. A typical :;
vs. M curve is shown in Fig. 13.

B. Timoshenko Solution of Transverse Plate Impact

Timoshenko's approach for solving transverse impact problems on simple

beams by coupling Hertz's law of contacf with the Euler beam equation has been

17
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extended to the case of a simply supported rectangular plate by Eringen [5]
and more recently to the case of a simply supported anisotropic laminated
plate by Sun and Chattopadhyay [6]. In this section we review the salient
points of the latter solution and show how it may be used to develop an impact
design curve for,anisotropié plates.. In addition, a normalized form of the
equations corresponding to a special case of this solution is derived, so
that the dimensionless parameters governing the peak strain response may be
identified. Finally, a series of numerical computations is performed, in
which each of the derived parameters is systematically varied in order to
demonstrate the significance of each parameter in describing the response to
a given impact.

1. Description of Solution Method

The anisotropic plate equations of Whitney and Pagano [7] are used
to predict the plate motion. Neglecting effects of rotatory inertia, the
deflection of a symmetric cross-ply laminated plate due to a centrally applied

force F(t) is

2 t
w(x,y,t) = éL g g {i:ll————— J F(T)sinwmn(t—r)dr
mn

+ sin 225 sin B%Z } myn = 1,3,5,°°¢, (35) *

where w, a, and b are the mass and plénar dimensions of the plate, and
W, are natural frequencies dependent on m and n and the properties of the
plate.

Hertz's law of contact is assumed to hold

a3/2 (36)

18




where k2 is a constant and o

to the plate surface, or

a =
/

for central impact, where v,

Newton's law applied to

These four equations (35-38)

NADC-78259 60

is the indemtation of the impactor relative

a b )
is the impactor displacement.
the impactor m, is
1 t rt
vt - = J f F dt dt .38)
2 ‘0°0

may be combined into a single nonlinear integral

equation in terms of the contact force F between the plate and the impactor,

. 2/3 t st
|
EF_s =vt_if f F dt dt
2 M Jo Jo
{
4 . 3 ¢
- = == f F(t1) sin wmn(t-r)dT (39)
mn ‘0

1l wm=1,3,5 n=1,3,5
which is solved numerically by applying the small-increment method suggested
by Timoshenko, in which the contact force F is assumed to be constant or
linearly varying during any time increment At.

Expanding the above integrals

to calculate the force Fi during the"ith time interval, we obtain

“Fi‘2/3 NERE! , i
— =vilt-—— ¥ D . F -— I E __F, (40)
~k2_ i m2 j=1 i-j+1 7 j m, j=1 i-j+1 7j
where
El_j+1 =3I I 5 leos[uw (i-j)at]
m n wmn

- cos[wmn(i-j+l)AT]}, myn = 1,3,5,¢¢0,0

If the contact force is approximated as a Plecewise linear continuous

function of time, with an average value of Fi during the ith time step, then

19




NADC-78259.60

1
jzl Dy_g41 Fy = 2[G-DF) + (1-2) (F,-F))

+ (1-3)(F3-F2+F1)+---+(1—j)(Fj—Fj_1+Fj_2—---i.F1)+---+

1.. -
(F +¥ i:Fl)] + B(Fi_Fi4 +F, +Fl)

1-1"F3-0%F; 3 1 i-2

For computing the solution of Eq. (40), Sun and Chattopadhyay have
suggested a recursion method, but we have found that such a time-saving
approximation is unnecessary. A listing of the computer program for solving

this equation is presented in Appendix C.

2. Dimensionless Form of Timoshenko. Solutions

a. Plate Impact

By expressing the Timoshenko solution in a particular normalized
(dimensionless) form, the parameters governing the impact response of plates
may be identified. Specifically, itkis shown that the generalized strain Ex
'depends on three dimensionless parameters: the‘mass ratio M, thevaépect—
orthotropy ratio n, aﬁd also another parameter which involves the geometric
and material properties governing the contact effects between the plate aﬁd
the impactor.

For a simply supported rectangular plate impacted at the center,

let us consider the governing equation (39) and the strain equation,

20
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- 2h'n2

2.t
€ : - J F(1) sin w_(t-1)dr (41)

x m1a2 n n %, Jo

If we assume that the plate is specially orthotropic in bending (i.e., D16 =

D26 = 0) and further that the flexural rigidities are related by

D,y + 21)66 = 4,1)11 1)22 . (42)

(see Appendix F) then the natural frequencies are

wmn = wll Amn(n) (43)
where
Y11 772 \bn
a
2 2
s _ M 4+ Mn
Amn(n) - 1+
. 2 D
a 22
n= {7) 14— (44)
O

Note that this expression for the natural frequencies is a special case
of that employed in the Sun and Chattopadhyay solution, in which the
approximation of Eq. (42) is not used.

In order to normalize Eqs. (39) andk(él},,the following dimensionless

variables are defined,

ctl

= wllt
3

=F a

L]

wll/Dllvb . (45)

Recalling the definition of generalized strain,

e .
e = -Xemax o : (21)
x hv P

then Eqs. (39) and (41) may be written as

‘ tt___ :
xp1/3§2/3=?-——-’-4——— J f F dt dt

a2 JoJo
-4y g 1 JE F(7) sin A_ (t-7)d7 (46)
,"4 m n Am(Y'I) 0 mn
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- 1

2 t
- 2 m j-_ - .- -
g =~—~————7 LI ——— | F(1)sin A (t-1)dt (47)
X ﬂ4(1+n)3 oo Amn(n) 0 mn
where
M= ml/m2 (3
and
AT AT
A= -5 (48)
P a3 vk2
2 .
and T is a dummy variable for dimensionless time t. It can be seen from
these normalized equations that the generalized strain Ex depends only on ”

the mass ratio M, aspect-orthotropy ratio n, and the parameter Ap; that is
EX = EX(M’H,AP) (49)

The parameter Ap defined in Eq. (48) may also be expressed as

= h
T E ( 2) (2)(2) g, m? @] (50)

Thus, the parameter Ap can be described as the product of several dimension-

less quantities.

2 N\

- __ elastic forcé\ /' wave speed :

Ap (constant) x < contact force / _impact velocity/
(P;i::etgzzzzﬁs§> x [function of aspect-orthotropy ratio] -

b. Beam Impact
In Ref.[1], the equations for the Timoshenko solution of beam impact
were presented and discussed. These equations may also be normalized by the

above procedure. If we define

i
|

= wlt
F = FL3wl/EIv
4
22
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then the equations governing the response of a beam, corresponding to

Egqs. (39) and (41) for the plate, may be written as

TE_
SRR R

0“0
2 1 t = - 2,=- = =
—Z-Z ) J F(t) sin i (t-1)drt (51)
n 1 1°7Q
and
- 1 E_._ 2__...
€ = —Z-Z J F(t) sin i (t-1)dT (52)
i
ﬂ 0
where

V@ - @ () () o

which may be expressed as

“deflection force 2
A, = (constant x K
contact force

< _wave speed radius of gyration
impact velocit depth of beam

It can be seen from Eqs. (51) and (52) that in this case the generalized

strain e depends only on the mass ratio M and the contact parameter Ab, or
e =e(,))

In Ref. [1] it was shown that for large impact masses (M < ~2) the

dependence of the generalized strain € on the contact parameter A, was only

b
slight; that is
€ = e(M) -for small M.

For the case of plate impact, the influence of the contact parameter AP is

also relatively insignificant in determining the peak strain response to

impacts by large masses. This will be demonstrated in the following section.
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3. Parametric Study for Large Impactors

As can be seen from Eq. (49), the response of a specially orthotropic
plate satisfying the condition of Eq. (42) is described by several param—
neters: M, n, and Ap. In this section, we examine the significance of each
of these parameters for cases where the mass of the impactor is large com—
pared to the mass of the plate. It will be demonstrated that, for plates
of given aspect-orthotropy ratio.n, the dependence of the impact response

on parameters other than M is weak for low values of M, so that

e, = eX(M,n) for small M,

To determine the significance of the various parameters to the impact
response, several plate impact problems have been calculated using the
Timoshenko solution method. Each problem of this series is based on an
impact situation with the impact constants listed in Appendix C. A para-
metric study was carried out by systematically varying the values of the
impact velocity v, the Hertzian contact stiffness kz, the plate flexural
stiffness matrix Dij’ and the impactor mass m,. A summary of this study,

along with the computed values of the generalized strains Ex and Ey and the

contact parameter Ap, is presented in Table I.

24
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TABLE I

PARAMETRIC STUDY
PLATE IMPACT CASES CALCULATED BY THE TIMOSHENKO SOLUTION (n=0.459)

25

Mass Impact Hertz FlexuraliDimensionless Generalized Strain
Ratio, Velocity] Contact SStiffness Contact
M=ml/m2 v/v0 Stiffness, % Matrix, Parametgr, EX ey
%0 P13/Pig0p 50 L |
t
§
1.036 1 i 1 ! “ﬁfjg?_“" z_fff wfiéfs
i V2 ‘ 1 1 4,94 2.536 1.538
i ! — o
i 1 i 2 1 1.748 2.592 1.556
: }, P e e e e —— —— e . e
i i 1 1 ! 2 39,54 2.339 1.440
Co1 | 1 1 6.99 2.770 1.702
O' 784 T, .«.j!,,k [P S U,
/2 : 1 1 4.94 2.798 1.713
1 | 2 1 1.748 2.848 1.731
1 1 2 39.5¢4 2.609 1.635
e — . ,!v.
1 1 1 6.99 | 3.298 | 1.983
0.475 , B
V2 1 1 4.94 !'3.340 | 1.988
1 2 1 1.748 i 3.425 . 1.999
1 1 2 39.54 | 3.021 2.025
e s e e e m e o - s e ?. N
1 1 1 6.99 { 4.585 2.910
0.242 =i —_— e e -
V2 1 1 4.94 4.611 2.922
1 2 1 1.748 4.678 2.946
R . N IR B -
1 ‘ 1 ' 2 39.54 | 4.418 2.794
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Figure 6.

Mass Ratio, M = ml/m2

X Experiment - Gr/Ep plate

One-degree-of-freedom model , Eqe(22)
~—[]- - Timoshenko solution.
Generalized strain curves for simply supported

rectangular orthotropic plates (n=0.459) subjected
to central transverse impact.
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Note that for all of these calculations the value of the aspect-orthotropy
ratio n is the same (n = 0.459). An inspection of this table indicates that,
for any given value of the mass ratio M, the maximum difference between any
two values of Ex or of Ey is only 12%, whereas the largest value of Ap is 22,6
times the smallest. It may be concluded, therefore, that the dependence of
the generalized strain Ex or Ey on the contact parameter Ap (or on any other
parameters) is weak, and that for constant n a single Ex vs. M curve gives

an acceptable representation of all impact cases. Furthermore, since the
powerful Timoshenko solution, which includes the effects of contact behavior,
indicates tﬁat such behavior does not significantly contribute to the impact
response, then the validity of the one-degree-of-freedom model, which neglects
contact effects, is thereby substantiated for the range of low M.

The Timoshenko solution may be used to construct an impact design curve
by p;otting calculated points on an Ex vs. M graph (Fig. 6). These calcu~
lated points alone can be approximated by a single curve which may be used
as a design curve. Note that such a curve would not be very different from
the curve corresponding to the one-degree-of-freedom model discussed in a
previous section. Also included in Fig. 6 are results of a series of impact
experiments performed on the graphite-epoxy laminated plate described in

Appendix C [ 8 ].

C. Impact Experiments

Several series of impact experiments were performed on simply supported
and clamped-edged plates, including strain-measurement experiments and impact-
to-failure tests. The plate specimens, made of aluminum or graphife/époxy,

were impacted by blunt steel projectiles using a drop-—test apparatus. In the
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strain-measurement experiments, the strain in the plate was recorded using
strain gages and an oscilloscope. In the impact-to-failure tests, each plate
was impacted at gradually increasing impact velocities until i; failed. 1In
this section, these experiments are described in detail,_and the results are
compared with the theoretically derived design curves.
1. Specimens

The impact specimens included both aluminum and laminated graphite/epoxy
plates. Three 6061-T6 aluminum plates were used with both simply supported
and clamped boundary conditions. The dimensions and mass of these plates
are: (1) 125x125x6.35 mm, 0.282 kg; (2) 250x125x6.35 mm, 0.561 kg; and (3)
375x125%6.35 mm, 0.843 kg. These dimensions and masses include only the area be- |
tween the supports of the plates; an additional 10-mm margin was left along each

edge to support the plates.

Graphite-epoxy specimens, fabricated from Hercules, Inc., type AS/3501-6
pre~impregnated tape at various lay-ups, were used as simply supported and
clamped plates. The dimensions, mass, and lay-up of each plate are listed in
Table IT. These dimensions and masses again include only the area between the sup~
ports of. the plates; a 10-mm margin protruded beyond the supports around eéach plate.
Elastic properties for the combosite plates were calculated from lamina-

tion theory, using the following properties for each layer:

B, = 17.7x10° psi = 1.220x101 N/m?
E), = 1.3x10% psi = 8.96x10°  N/m?
Vig = V33 = 0.3

v23 = 0.2

G,,=6G,_ = 0.55x106 psi = 3 79x109 N/m2
12 = G413 .

G,y = 0.54x10° psi = 3.72x10° N/m2

28
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Flexural
Stiffnesses

(N/m)

Shear
Stiffnesses’

(N/m)
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----------II-IIIIIIIIIﬁ

TABLE III. SHEAR AND FLEXURAL STIFFNESSES OF
GRAPHITE/EPOXY PLATE SPECIMENS
B-series, . F-series H-series’
Dll 2470, 19750. 9970.
D12 710. 5080. 4710.
D22 963. 8100. 13?00.
D¢ -73.3 -26.7 -529.
D26 -73.3 ~26.7 -267.
D66 748. 5380. 4960.
A44 77700. 15400q. ‘ 147000.
A45 0 0. 0
A55 78200. 155000. 147000.
30
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The computed values of the flexural and shear stiffnesses of each plate are
summarized in Table III. In all further calculations, the D16 and D26 terms
are neglected; that is, the entire laminate is treated as specially orthotropic.

Calculated values of the parameter n and the functions gl(n) and gz(n)
necessary to construct the design curves are listed in Table IV for each
graphite epoxy plate.

2. Strain-Measurement Impact Experiments

The plates were centrally impacted by blunt (6.35 , 12.7, or 25.4 mm
contact radius) steel cylinders of various masses at several velocities using
a drop test apparatus. The strains, € and ey were measured, in directions
parallel to the plate edges, directly opposite the impact'point, using a
Micro-Measurements, Inc., type FA-13-062TT-120 metal-foil 0°-90° rosette
strain gage, and recorded on a Tektronix model 565 oscilloscope. Impact
velocities were calculated from the drop height.,

For impadts on clamped plates, the plates Were'élamped along all
edges by a frame of rectangular steel bars (Fig. 7).‘ The entire assembly was
fastened to a large lead plate and rested on a concrete floor. |

In the experiments performed on simply supported aluminum plates, each plate
was rested on top of a frame of rectangular-cross-section steel bars. TFor
the composite plates, however, the clamping device mentioned above was modi-
fied to simulate a simply supported boundary. Grooves to accommodate 3.175 mm
(1/8") rods were machined in each member of the clamping device such ;hat,
when the clamping device was assembled, the specimen plate would be resting
on the rods.

Experimental results of the strain-measurement tests on both clamped

and simply supported plates are presented in Appendix E in both tabular and

32
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graphical (e vs. M) form. Also included in Appendix E are some typical strain
vs. _time oscilloscope traces. Figures 8 and 9 are typical examples of the € vs.
M curves for the clamped plates and the simply supported plates, respectively.

In each of these figures a dashed line has been fitted by eye through the

experimental points. The maximum percentage difference (variation) between

this line and the experimental data is also shown on each figure. For both

y
the clamped and the simply supported cases, the largest value of this variation J
is 36%.
Experimental data from specimens having approximately the same value of
the parameter n have been presented on the same design curve except the three }
smallest sized plates.(Bl,Fl, and H1). Values of ¢ for these three plates :
\
are considerably smaller than those for larger plates with the same parameter 1
n. It is believed that, due to the small size of these plates, the boundary 1
constraint has more influence, and the deflection mode is different from the other ‘
plates. Perhaps thick-plate, damping, and shear effects are more pronounced. ‘
Data from these plates, although presented on the € vs. M plot of Figs. 10 and
11, were not used in constructing the experimental design curve line nor in
calculating the variation.
Also shown in Figs. 8 and 9, and in each design curve in Appendix E, is
the theoretical (one-degree-of-freedom) design curve. Comparison of this
curve and the one from expérimental data shows an average discrepancy of about
40%. Note that the theoretical curve is always conservative (i.e., predicts
a higher plate strain) over the range of experimental results. However, the
slope of the line drawn through the experimental data is in all cases roughly

the same as the slope of the theoretical curve.
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N
)

Figure 8. Typical -é-,;vs. M Curve for Clamped Orthotropic Flates
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As previously discﬁssed, all impact data can be plotted on a single
curve, % vs. M. This is done for impact data on clamped plates in Fig. 10
and on simply supported plates in Fig. 11l. Note that, since € is independent
of both the parameter n and the boundary conditions, both ;ases could have been
plotted on a single figure. Because of the overlapping of experimental data,
the clamped and simply supported cases, were presented separately for clarity.

3. Impact-to—~Failure Experiments

In addition to the strain measurement impact experiments, a series of
tests were conducted in which laminated composite platés were impécted to
failure. In each of these tests, a plate was repeatedly impacted by the
same projectile using a drop?weight apparatus at grédually inpreasing veloci-
ties (drop heights) until failure of the specimen was detected. The specimen
was examined for failure aftgy each impact both visually and ultrasonically,
using a hand held pulse-echo transducer and reflectoscope.

The average between the highest impact velocity, \FL for which a particular
specimen did not fail, and the lowest velocity, Ves for which any failure was

detected, is regarded as the critical or failure velocity, Vs Or

v 2JatVe
_ c 2

This velocity is used in characterizing the impact resistance of each specimen.

.The results of theselexperiments are presented in.both graphical and
tabular form in Appendix E. Figure 12 is a typical example of the ;évs. M
curves for the clamped plate. Again, a dashed line has been drawn to indicate
the design curve based only on experimental results. As can be seen, there
is good agreement between the experimental data and the theoretical one-
degree-of-freedom curve.

Again, a design curve independent of the parameter n and the boundary
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conditions (v vs. M) may be used to present impact data. However, from
(34), it is apparent that only those plates with the same value of Eg

should be presented on this curve. For the composite piates, therefore, a

:gvs. M curve should be prepared for each different lay-up. Figure 13 is

such a plot for the experiments pérformed on B-series plates. |
After damage was detected, several plates were ultrasonically C-scanned.

Transducer output was passed thréugh an analog to digital converter. Data

was then processed by Fourier transform techniques using the first five wave~

forms. Typical transducer response is shown in Fig. 14 for an uﬁdamaged

area of a plate. The topfsurface and bottom-surface echoes are clearly visible

with little evidence 6f internal reflection. Figures 15 and 16 show trans-

ducer response over damaged areas of two different specimens, ‘Figure 15

shows a damaged region extending from about one-quarter of the pléte thick-

ness gelow the surface tb the midplane of the plate. This type of damage

has been observed by use of the hand-held transduéer in approximately 75% of

the failure tests. It is believed that this mode of failure is delamination.

Figure 16 is representative of the remaining 257 of the failure tests. As

can be seen, there is little indication of damage through the thickness of

the plate. This, along with the absence of a bottom-surface echo indicatesl

that the plate has probably been damaged near the top surface, It is:believéd

that this mode of failure results from‘f;ber breakage, due to bending and/or

contact effects.

D. Design Curves‘for Shear Failure Due to Impact

A structure subjected to impact may also fail due to the high level of
shearlatress produced. in this section, a theory Based on the one-degree-of-
freedom impact model is developed for predicting the maximum impact-induced

transverse shear stress in simply supported beams and plates.
40
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1. Simply Supported Beam

By extending the one-degree-of-freedom, energy-conserved model previously
discussed, a design curve for predicting the peak shear stress in a simply
supported beam subjected to transverse impact may be generated.

First, the maximum shearistress in the beam is related to the maximum
deflecfion by the static beam equation. The deflection of a‘simply supported

beam subjected to a static load at midspan is

2 | "
wix) = w, = (3 - 4% O<x<L/2 (54)
1L L2 —— '
where wl is the deflection at midspan. The shear force generated is

_ N
dx

E1 .

24 3 Y _ (55)

For a beam of rectangular cross-section, the maximum shear stress occurs at

the neutral axis and is given by

= 3V
"max ~ 2A
36ET (56)
ST 3"
AL max
The maximum deflection LA may be related to the impact velocity by -
max

the conservation-of-energy condition, which implies that the initial kinetic

energy of the impactor is entirely converted into bending-strain energy in -

the beam. v
’mz
w = vi{—=—= (57)
1 K
' max 1
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By defining the dimensionless (generalized) shear stress as

- Tmax L azA .
T owE (58

and combining Eqs. (56) and (57), we obtain the equation for the shear-stress

design curve. : '
T=3 {ﬁ- ‘ (59)
This equation is plotted in T vs. M coordinates in Fig. 17.

a. Relative Importance of Shear and Bending

Depending on geometry, strength, and elastic properties, a particular
beam subjected to low-velocity impact may experience failure initiated by
bending or shear effects. The theories presented hgre for predicting bending
strain and shear stress due to impact are both based on the static beam
deflection curve. Therefore, the relative importance of bending and shear
effects may @e estimated by considering the static relatiomns betﬁeen shear
and bending.

If a maximum-stress failure criterion is adopted for both shear and
bending, then failure due to shear will be more likely if, for any impact

velocity v, we have
oz K
f f _
whgre the subscript f denotes values at féilure. By combining this relation

with Egs. (12), (13, (59), and (50), we obtain

g
£, 2 (61)
Tf

Based on the approximate theory presented here, this inequality must be

Hi=

satisfied for impact failure to initiate by shear effects; 1if it is not

satisfied, failure will initiate by bending.
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b. Critical Impact Velocity Curve

The relative importaﬁce of shear and bending effects in initiating
failure of a particular beam may be illustrated by presenting the design
curve in a form similar to that presented in Section II for plate impacts.
In this alternate form, theoretical'design curves and experimental data are
plotted in coordinétes of a dimensionless impact velocity v or v and the mass
ratio M. Then, each critical velocity curve divides the plane into two regions:
above the critical bending curve is the region bending failure occurs, and
below is the no-bending-failure region. The same is true for the critical
shear curve. |

Specifically, if the dimensionless impact velocity for the beam is defined

as

37 = lle : (62)
a :

then the one-degree-of-freedom energy-conserved impact model, predicts that

failure will initiate in the beam due to bending for

v, == /M | (63)
where ef is the tensile failure strain, assuming a maximum~strain failure
criterion.

Similarly, according to the theory discussed above for estimating the
shear stress due to impact, Eq. (59), failure due to shear occurs for
e 4L

e " A (64)

v
where Tf is the shear stress at failure, assuming a maximum-stress failure

criterion in shear.
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Equations (63) and (64), plotted in v vs. M coordinates, repfesent the two
critical velocity design curves. The relative importance of shear and bending
regarding failure of a particular structure is immediately apparent from such
a plot —- the lower curve predicts failure at aAsmaller impact velocity, indi-
cating that the failure mode (shear or bending) associated with the lower
curve is the critical onme.

Consider, for example, the impact failure tests on 22 graphite-epoxy beams.
These beams were fabricated from Hercules AS3501 at a lay-up of [1_45/02/; 45]2.
All beams have a span to thickness ratio (L/h) of 48.53. Data from all the
impact tests (with'or without failure) performed on these beam specimens are
tabulated in Appendix E and plotted in v vs. M coordinates in Fig. 18. Also
included in this figure are curves representing Eqs. (63) and (64). The value
of the bending failure strain €¢ useh is 0.0168; the value of the shear failure
stress Te used is the value of the interlaminar shear strength given by the
material manufacturer (Hercules Product Data Sheet No. 832) as 18,900 psi
(130. M¥/m%).

Note that the lower curve .in Fig. 18, which represents Eq. (63), approxi-
mately divides the experimental paints according to whether the points correspond
to failure or no-failure tests. Also, the curve corresponding to shear failure
falls much higher-on this plot than the curve for bending failure; this indicates
that for these beams the bending is the mode in which failure initiates.

2. Simply Supported Plate

A design curve for estimating the peak transverse shear stress at the
edge of a simply supported, rectangular, orthotropic plate subjected to central
lateral impact may also be developed.

It must be recognized that the edge shear is only a rough estimate of
the maximum shear stress occurring in the plate; much higher stresses may be

generated in the immediate vicinity of the impact point. However, analysis
50
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of the problem by plate theory alone (as isvdone here) leads to a singularity
in the shear at this point, due to treatment of the impact load as a concen-
trafed force. A more sophisticated.analysis would focus on the three-dimen-
sional stress field near the impact location. Still, for design purposes,
knowledge of the edge shear can sometimes be useful, If, for a particular
impact situation, it exceeds the allowable shear stress, failure will certainly
occur; on the other hand, a low edge shear stress does not, of course,
guarantee survivgl of the structure,

As in the previous case of the beam, the maximum- edge shear stress in
the plate is first related to the maximum central deflection by assuming that
the static relations hold. In terms of generalized plate forces, the maximum

values of the transverse shear stress components are

_ 2%
sz 2h
3
Tyz = o5 (65)

for a homogeneous plate. For a specially orthotropic plate, the generalized

forces are related to the deflection distribution by

2 2 "
- _§_/ 9w 9w
RSN PR G VI T
' Y (66)
2 2
3 W 35w
Q =-—— H—5+D  —5
y dy aXZ 22 8y2

where

H=D + 2D

It is again assumed that the dynamic deflection due to impact is the
same as the static deflection due to a central point load. In this case, the

maximum edge shear force occurs at the middle of the edge. If it is also assumed

that H = 'ifﬁllDzz, then 52}
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3
kKl Dll fs(n)

T = w (67)
xzmax 2h a3 fl(n) lmax
3n3012 fs(n-l)
T ) 3. 1M1 (68)
Y2max 2h b £.(n7) “max
where |
m-l

o o« 2

£n) = ] I e (69

m=1,3,5 n=1,3,5 m" + nZn
and where fl(n) and n are defined in Eqgs. (15)' and (16), respectively;

If we define the dimensionless shear stress parameters

8 ah
T =1 X
Xz xzmax Dllv
- s.2 bh
T =71 i A (70)
yz YZpax I)22" :

then Eqs. (67) and (68) may be combined with the conservation-of-energy

condition, Eq. (4), to yield the design curve equations,

! 83(“)
Txz ™ » (1)

83(n—1)
yz M (72)

1l

where 3
T fs(n)

Vfl(n)

g3(n) (73)

Equation (71) is plotted in Fig. 19 for a few values of n, and the function

g3(n) is presented in Fig. 20.
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IiI. TIMPACTS BY SMALL IMPACTORS

In this section, approximate equations for predicting the peak strain
response of simply supported beams and plates to impacts by small impactors
are derived. The accuracy of these equations is demonstrated by comparison
with experimental results and with the Timoshenko solution.

A, Simply Supported Beam

1. Approximate Analysis hd

It has been observed in experiments and in calculations of the
Timoshenko solution that for the case of small impactors (mass ratio M
greater than about 2), the interaction between beam and impactor is a single,
sudden blow of short duration compared to, say, the fundamental period of
vibration of the beam. This is quite different from the large impactor case
where multiple impacts occur. By assuming that the beam does not appreciably /
deflect during the short period of contact and by making a few other approxi-~ k
mations, we may derive a relation which is useful in generating design curves.

The assumption that the beam does not deflect during contact is equiva-
lent to assuming that the impactor is much less massive than the beam, which
may thus be treated as a semi-infinite body. An approximate solution for the
contact force during the elastic impact of a spherical impactor against a

flat semi-infinite body has been calculated by Hunter [9] as

_ [P sin £t 0<t < /E
F= {0 t > n/¢ (74) ‘
P =1.068 vm, £ (75) -
1/5
v g\
£ = 0.9768 3 / (76)
\ mz
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The response of a simply supported beam to a centrally applied trans-
verse dynamic load of the general form of Eq. (74) is derived in Appendix D.
The maximum deflection and bending strain occur at midspan at a time about
one-quarter of the fundamental period after impact. The peak strain may be

expressed as

_ PLh :
€rax ~ EI f(B) (77)_
where
1 s 28 12 '
HORE ) 5 €05 5 (78)
n° i=1,3,5 B° - i
and
g = f— (79)
1

1 ‘fundamental period of beam
2 \ contact force duration

Substitution of the approximate value of & given in Eq. (76) into

Eq. (79) yields an approximate value for 8.
. 2.1/5

2 vk
g = (0.09897){1*-5) Q%) (80)
2%/ \m, |

This quantity may be expressed in terms of the dimensionless parameters

previously derived as

L 25
(0.1564) T> (81)
-

B

where M and Ab are defined in Eqs. (3) and (53), respectively.
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By substituting for P and B into Eq. (77) according to Egqs. (75) and
(76), and recalling the definition of generalized strain, Eq. (12)

we obtain
T = 1.068 12 £(8) % (82)

This result may itself be used to generate a series of design curves by
plotting € vs. M for different values of B , however, this equation may be
further simplified as demonstrated below.

Note that Eq. (82) shows a strong dependence of the generalized strain .
€ on both the mass ratio M and the parameter B . Also, observe that for a
constant value of B , ¢ is inversely proportional to M, rather than M
as for the case of large impactors. This suggests that for small impactors
‘the peak strain is related to the momentum of the impactor, rather than to
its kinetic energy as for large impactors. That is, large-M cases are governed
by the impulse exerted by the impactor, whereas small-M cases are character-
ized by the work done on the beam.

The influence of the value of the parameter B on the generalized
strain € can be estimated by taking the limit of Eq. (82) as B becomes large.

In Table V, calculated values of f£(B )are presented (see Appendix D).
Examination of this table reveals that, as B increases, the quantity VB f(B)
approaches the value 0.12412. Observe also that, for 8 > 7, VB f(B) never
differs from this value by more than 2%. Since most practical problems satisfy

the condition 8 > 7, we can assume with little inaccuracy that

Y8 f(B) = 0.1241 .
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TABLE V

COMPUTER-CALCULATED VALUES OF f£(R)

£(B)
0.06%66
0.04590
0.03203
0.03150
0.02780
0.02264
0.01755
0.01388
0.012413
0.010132
©¢.008777
0.007166
0.0605551

59

/B £(B)

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.12413
0.

0.12412

11200
12145
12342
12356
12432
12402
12408
12414
12413
12412

12412
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Substitution into Eq. (82) yields

e _ 1.308
= (83)
B M
or, defining a new generalized strain for the small impactor case as
e* = —-—E._ 84)
R ¢
we then have *
1.308
* = =220
3 " (85)

This simplified equation may be used as a design curve for the case of small
impactors by plotting e* vs. M. 1In Fig. 21, such a curve is compared with

the experimental data recorded in Appendix E. In general the experimentally
determined values of e¢* are roughly 60% lower than those predicted by Eq.- (85).
Note, however, that the band of experimental points on this graph form a
relatively narrow band; for any value of M, the variation in e* is at most

+ 25% (at about M = 6) and much less for the higher range of M (greater than

about 10). This variation in e* is much smaller than the variation in ¢

alone, for the same data. Also, the slope of this band is very close to

that of the curve corresponding to Eq. (85). This suggests that the locus

of the experimental data plotted in these particular coordinates may itself

be useful as a design curve. We may conclude that Eq. (85), while not accurate,
is significant in that it serves to identify the form of the relationship among
the several parameters governing beam responsé to impacts by small masses.

2. Timoshenko Solution

Also included in Fig. 21 are several points corresponding to calcula-
tions using the Timoshenko solution; data from these calculations are summar-

ized in Table VI, Note that these points form a very narrow band, the
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TABLE VI

CALCULATIONS USING TIMOSHEKRK

SOLUTION FOR LARGE MASS RATIO M

Beam Mass Mass Impact Contact Generalized s
S R Ratio, Velocity, | Stifiness, Strain, —
Dimensions, /A
and Material 3/24 — 2, 8
- M=ml/m2 v (m/sec) kz(N/m Ye =¢ga“/hy
¥
10
' .4 .180: .04
0.389 kg 27.7 8.72 |2.466x10 10.1807 0.0405
106 ’
. o) 7
. 197 % 16 x 16 ma 27.0 6.37 |2.415x10 0.1782 0.0416
r " 13.17 " 0.1894 0.0412
steel | 13.84 g8.72 | ™ 0.2835 0.0734
" 12.19 no 0.2909 0.0728
" 8.72 '»l.233xlOlU 0.2557 0.0757
‘ o 17.43  12.466x10" %] 0.2990 0.0720
" 8.72  |1.744x10"%1 0.2696 0.0744
6.86 5.49  |2.416:x10°7) 0.4124 0.1287
" 8.53 " 0.4240 0.1266
3. 564 6.28 " 0.5727 n.2013
" 9,20 oo 0.5865 0.1984
0.389 kg, steel 13.84 8.72  |2.466x10"%] o0.2502  [0.0322
394 x 8§ x 16 m=m
" . 2 " 70" ‘ 31
0.389 kg, steel 27.7 8.72 0.2703 1.0361
394 x 16 x 16 mn 6.92 8.72 " 0.3172 0.9559
0.389 kg, steel 13.84 8.72 o 0.2163 0.0789
197 x 8 x 32 mwn
0.1943 ko, steel o . " ' ”y 9
197 5 8 218 o 6.92 8.72 0.4524 0.1192
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variation being less than + 5%; again, the variation in e* for the same

data is much larger. In addition, the band of points is much closer to the
curve corresponding to Eq. (85) than are the experimental points; these points
lie only 15 to. 457 below the curve and appear to approach thé curve as M
increases. The closeness of these results implies that the lack of agree-
ment between Eq. (85) and the experimental data is not only due to the approx-
imations used in deriving the equation. Apparently, there are additional
effects which significantly influence beam response to impacts by small masses
which are not accounted for eve; in the powerful Timoshenko solution. Several
researchers have modified the basic solution to include some of these effects,
but these more involved models are too cumbersome for the development of an
impact dgsign curve, since for each effect considered, another parameter (or
possibl& several) must be introduced. Such complications are surely justified
when one is analyzing a specific impact problem, but are of little assistance
when one is designing a structure to resist potential impacts due to a range

of masses, velocities, materials, etc.

B. Simply Supported‘Plate

In this section is developed a design curve for predicting the response
of a simply supported plate to impaét by a small mass using the same approach
as applied above to a beam.

1. Approximate Analysis

As in the case of the beam, we assume that the plate does nof appreciably
deflect during the short period when the impactor is actually in contact with
the plate. Again, this assumption is equivalent to supposing that the impactor
is much less massive‘than the plate. Thus, the contact force is roughly given
by the approximate solution for a sphere elastically striking a flat semi-

infinite body, Egqs. (74), (75), and (76).
' 63
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The dynamic response of a simply supported plate to a central transverse

load F(t) is given by [ 6]

(an—Z)/Z
=.fL z X ~-1) cin BTX 4o ngy
m oo w a
t
J F(1) sin wmn(t—T)dT (86)
0

For a thin specially orthotropic plate, the natural frequencies are given

by [10]

4 2 2 4

. _
2 il m mn n
“:n = oh {—Dll =t 2Dyt ) 22 +Dy, Y (87)

If we again assume that

D12 + 2D66 = ﬂDllDZZ (43)

then we have

= w m2 + nn2
wmn 11 1+n
in which
l / Dll)llz
=T i
mll 2 \ (1+n) (88)

Substitution of the assumed form of the contact force, Eq. (74), into

Eq. (86) and integration yields

mrn-2
w X z —Ekin——i (- 2 sin X gin E%X
l llmn m + nn a
w_m
2P 75— sin w (t+7/E) cos mgg (89)
E(l—mmn /8%)

In the corresponding formula for the beam, all terms in the series reach
their maximum values at exactly the same time, due to a simple relationship
which exists among the natural frequencies (see Appendix D, Eq. (D1)),
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In the present case of the plate, the terms in Eq. (89) do not, in general,
reach their peak values simultaneously; however, we can estimate an upper

bound for the deflection (and also the bending strain) by letting

sin wmn(t + 7/g) =1 (90)
for all m and n.
. The maximum strain in the x-direction due to bending occurs at the

center of the plate,

2
I = - b— _a._V’_ (91)
X 2 ,.2
X |x y 1
ab 2
so that the upper bound on the strain is given by
2 B TA
4 Pha 1 m b} mn
e = ) cos =— (92)
X,max 2 2 A .2 2 28
m Dllb (Q4n)" mn “mn Bp Amn p
where
Bp’ = tloy, (93)
and
2 2
_m + nn
Amn B 1+n (94)

Substitution of the approximate value of ¢ given in Eq. (76) into

Eq. (93) yields an approximate value for BP, given by
1/5

2\ — vk2 |
h 2
8 = 0.09897 (a ) |2 < (95)
P 1+n \/Dll mz2

This quantity may be expressed in terms of dimensionless parameters previously

derived as

9 1/5
M

g = 0.1564

P

A (96)
‘ Ap(l+n)

65




NADC-76259 60

Now, if we substitute for P in Eq. (92) according to Eq. (75), we

obtain
€ = 4(1.068)hv 93—-(~l— (Eﬁx
X,max : D 1+n A M
11
[
m2 B- T Am
Il % 3 cos 3 (97)
mn mm R - A P
P mn &

Finally, if we define the generalized strain for impact of a simply supported

plate by a small mass as .

* €x,max 7 11/ph

®x ~ 4(1.068)hv B_ 8(B .1) (98)
P P
where 1
/ g
1 2 Bp b Amn
g(Bp,n) = I;ﬁ'é g A ; 7,2 cos 5z (99) {
P mn P ]

then the equation for the design curve according to this approximate solution
is i
* _
€ = /M (100)

Note that the function g(Bﬁ,n), plotted in Fig. 22, is practically
independent of the value of Bp, at least for realistic values of BP(BP > 7).
In Fig. 22a, g(Bp,n) is plotted over n for two widely different values of | >
85,7 and 500; the two curves are almost the same. In Fig. 22b, the maximum
and minimum values of g(Sb,n) for Bp in the range 7 < Bp < 500 are plotted ~
for each value of n; again, the two curves are quite close, indicating that

g(Bp,n) does not vary much with Bp.
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2. Comparison with Experimental Results

In Fig. 23, the design curve for impact of plates by small masses is
presented along with the results from experiments performed at Drexel. Two
graphite-epoxy platesvwhich were also used in the large impactor experiments,
Fl and F2, were impacted by aluminum pfojectiles. These experiments were
performed using an air gun with the projectile velocity recorded by a photo-
diode system. Data from these experiments are tabulated in Appendix E. As
can be seen in Fig. 23, the agreement between the theoretical design curve and
the design curve based on experimental results is of the same order as in the
large impactor case; that is, the experimental curve is about 407 below the
theoretical curve and has approximately the same slope.

Algo tabulated in Appendix E are‘experimental data found in Schwieger
[11]. These experiments were performed on a square Duraluminum (AlCuMgl)
plate, 550 x 550 x 4.97 mm, centrally impacted by steel spheres of 20- and
30- om radius. These data, when plotted in e* vs. M coordinates, do not compare
well with either the Drexel experiments or the 'theory. OCne explanaticn of this
discrepancy lies in the size éf the plate tested by Schwieger., In the Drexel
experiments, the ratio of the plate span to thickness (L/h) has a value of 18
whereas in the experiments éerforﬁed by Schwieger, this ratio has a value of 11C.
Thus, according to Zener [12], the response of the plate used by Schwieger is
governed by membrane and wave propagation effects. Since these effects are
not treated by the current theory, the data from Schwieger are not included

on the desicn curve.
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4

IV. DESIGN PROCEDURE

In this section, procedures are recommended for using the design curves
éresented in this report and for constructing new design curves for structures
not treated here based either on analytical calculations or on experimental
data. It is emphasized that these design curves are limited to predicting
only the maximum structural response to low-velocity impact.

A, Use of Design Curves in This Report

The design curves in this report predict the peak bending strain in simplyq 1

supported and clamped plates impacted by large impactors, and in simply supported

e

beams and plates impacted by small impactors. Also, in [1], simply supported
beams impacted by large masses were treated in detail.. Methods for the use of
each of these design curves will be discussed separately here.

1. Simply Supported Beam ~

Design curves for simply supported beams impacted by large impactors and 1

by small impactors are repeated here for convenience (Figs. 24 and 25, respec-‘

tively). In each case, we have selected a design curve fit by eye to the 1
experimental results as the one we will use.

The first step in using these curves is to compute the mass ratio

1 _ structural mass (101)

M= —=
m impactor mass .

2
If M is less than 2, the impact case falls into the domain of large
impactors; if M > 2, small impactors.

a. Large Impactors

From Fig. 24, read the value of the generalized strain & corre-
sponding to the value of M. Then, using this value E, compute the maximum

impact strain,
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Figure 25. Selected design curve for impacts of simply supported
beams by small impactors.
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e =X (102)
where h = beam depth
k = radius of gyration of beam
cross-section
v = impact Velocity
c = VElp = speed of flexural waves

in the beam

The use of this curve will be illustrated by an example.

Example #1

For a simply supported steel (density, 7.9 g/cm3) beam of rectangular
cross-section with dimensions L x h x b = 500x25x20 mm impacted at 10 m/s

by a mass of 4.0 kg, we have

M=l _  Lbh_ (7900)(.50)(0.025)(0.020)
m °"a 4.0
2 2 |
l
= 0.494

From Fig. 24, the value of €t corresponding to M = 0.494 is € = 1.20. Then,
by Eq. (102), we have

(0.025) (10)

e = (1.20) -
max 0.029 210x10° \M/2
/iz | 7900
= 0.0081

b. Small Impactors

From Fig. 25, read the value of the generalized strain e* corres-

ponding to the value of M. Then compute the maximum of impact strain,

= o* hy
€ oy = € /B & (103)
) 1/5
L2 {’vkg
where ‘6 = (0.09897) = K >
. m
N2 4
and k2 = Hertzian contact stiffness.
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Example #2

Consider the beam of Example #1 impacted by a steel sphere of radius

20 mm at 20 m/s. Then, by Eq. (101), we have

M = —1 _ (7900) (0.50) (0.025) (0.020)

m, %n (0.020)3 (7900)

= 7.46
From Fig. 25, the value of e* corresponding to M = 7.46 is e* = 0.060.

Hertzian contact stiffness is

g 2 -1
kz - 4 /R <1—\) :"l—v j

Em /beam \\En«>impactor_J

2 -1
/o 020 ———-1—'—9'—3—5— x 2]
7 210x10

= 2.176x101°0 n/m3/?

so that
1/5
2 10.2
B = (0.09897) (0-5;)) [20(2.176;(10 ) ]
“V210x10 0.025 0.265
7900 /12 ;
= 28.1

Therefore, the maximum bending strain is

e___ = (0.060) v28.1 (0.025) (20)
max 9
210x10° (0.025)
7900 /12
74
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2. Simply Supported and Clamped Plates

The procedures for using the design curves for rectangular plates is
similar to those outlined above for the beam. For convenience, we have re-
peated here the design curves for simply supported and clamped plates impacted
by large impactors (Figs. 26 and 27), and for simply supported plates impacted
by small impactors (Fig. 28). Thé first step in using any of these curves is
to compute the mass ratio M according to Eq. (101) and the aspect—orthotropy

ratio,

NOR v ao
where a and b are the plate dimensions in the x and y directions. For the
plates treated here, impact cases in which M < 4 fall into the domain of
large impactors, while cases where M > 4 are in the domain of small impactors.
The use of the design curves in each of these domains will.bé discussed

geparately here.

a. Large Impactors

The procedures for the clamped and simply supported plates are the
same but different curves are employed. For simply supported plates, read
gl(n) from the lower curve of Fig. 4 and € corresponding to the value of M

from Fig. 26; for clamped plates, read gz(n) from the upper curve of Fig. 4

_and T from Fig. 27. Then, the maximum strain may be computed from the formula

vh

ex,max - gi(ﬂ)'f if?=== (105)
11
ph

where v = impact velocity
h = plate thickness
p = plate density
D11 = platé flexural rigidity
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This procedure will be illustrated by an example.

Example #3
For a rectangular simply supported plate with the following properties
Dll = 680, N-m h=7m 5
D,, = 2490, N-m p=1.7 g/em
"a = 170 mm E = 8.96 Gpa
b = 350 mm v=20,3

impacted by a projectile with the following properties

R = 25 mm v =10.33
m, = 1.42 kg v = 3.0 m/s
E = 2.1x102 Gpa

we first compute the values of the mass ratio and aspect~orthotropy ratio
M= 0.5 n = 0.451
From Fig. 4, we find g1(0.451) = 0.26, and from Fig., 26, € = 0.91 corresponds

toM = 0.5. The maximum strain in the x-direction is

(3.0) (0.007)
680 ]1/ 2

£
X,max

(0.26) (0.91)
[(17'00) (0.007)

6.57 x 10~

b. Small Impactors

The design curve for impact of plates by small impactors caﬁ handle
only simply supported boundary conditions. To use the design curve, read the
value of generalized strain e: from Fig. 28 , and the value of g(Bp,n) f;om
Fig. 22. (Note that g(Bp,n) does ﬁot depend significantly on ﬁp for Bp > 7).
Then, the maximum strain may be computed from the formula

hv

= ¢* '
Ex,max € 4(1.068) g(Bp.'ﬂ)Bp W (106)
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where

' 2 k2

8 = 0.09897 -2 [oh 2
1+n 'VD 11 m2
2

This procedure is illustrated by an example.

Example i#4

Consider the same impact situation as in Example #3 but change the

impactor mass to m, = 0.035 kg. Now we have M=20, a small impactor case.

2
From Fig. 28, we read e: = 0.025; and from Fig. 22, g(%),0.451) = 0.35.

Computing Bp’ we get

(0.170) . [(1700) (0.007)

w™
|

p = (0.09897) 9T 'v 680
92 _1/5
[ (3.0) (2.008 x 10°)
(0.035)2
= 6.54

Therefore, the maximum strain is

(0.007)(3.0)
Ex,mag '.4(0.025)(1.068)(0.35)(6.54) I =

(1700) (0.007)

4

6.79 x 10

B. Construction of New Design Curves by Experiments

For beams and plates with boundary conditions different from those con-
sidered in this report, design curves may also be constructed based on impact
experiments. For these structures, the parameters governing the impact re-

sponse have the same form, but the relationships (and thus the design curves)
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are different. For still other structures (e.g., shells, rods), new param

eters may have to be defined.

1. Impact Strain Curves

To construct new design curves for large impactors, one may perform a
series of impact experiments and measure the maximum bending strain which
occurs in the structure during each impact. Then, compute the value of the

generalized strain according to the appropriate formula:

c. k
- b
€ =€ for beams
max hv
_ c k
E. = € £ for plates
X X,max hv

Plot one point for each impact in € vs. M coordinates, Logarithmic scales

are most convenient. Finally, estimate a curve to fit these points. This
design curve may then be used to predict the response of similar structures
having different dimensions subject to various impact conditions, as described

in Section A above.

2. Critical Impact Velocity Curves

In simple impact-to-failure experiments when the strain is not simul-
taneously measured, all that is determined is the lowest impﬁct velocity (or
critical velocity) at which the structure fails. However, this is sufficient
to constrﬁct a design curve useful in predicting failures due to other impact
situations.

For each experiment, the dimensionless critical velocity ;, defined
for plates in Eq. (33) and for beams in Eq. (62), is plotted vs. the mass

ratio M. Then these points may be connected to form the design curve.
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Note that for different impact conditions, different mechanisms (bending,
shear, torsion, etc.) may be responsible for failure; consequently, several
design curves may be required, especially to completely describe a series of
widely varying impact experiments.

Finally, note that since the contact effects depend on the impact velocity,
through a non-linear relation, this approach is not useful in the small im-

pactor domain.

C. Construction of New Design Curves by Analytical Tools

Using analytical methods, design curves for some structures which are
not treated in this report may be constructed. We can offer a few suggestions

on approaches to follow in order to construct such curves.

1.  Design Curves Based on Generalized One~Degree-of~Freedom Model

For impacts of other structures in the large-impactor regime, the gener-
alized one-degree-of-freedom model presented in éection IT may be applied.
To follow this approach, the equivalent structural stiffness,Kl and the strain-
displacement factor d12 must be found; these may be either derived from the
exact solution of the corresponding static problem or computed numerically
using some approximate solution (such as the finite-difference or finite-
element methods). Then the equation of the design curve may be derived
directly from Eq. (8). For beams, the form of the generalized strain will be
the same as in Eq. (12); for plates, the generalized strain defined in Eq. (21)

can be employed. For other structures, a new form may have to be defined.
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2. Design Curves Based on Impact Calculations

Several dynamic solution methods are available for determining impact
response of structures on-a problem-by~problem basis. These include the
finite-element method (in particular, NASTRAﬁ; see Ref. [1]), Timoshenko-
type solution methods (application of this app&oach to several beam and plate
structures is outlined in [5]), and possibly some approximate solutions based
on the Timoshenko method (similar to those presented in this report for small
impactors). Design curves may be constructed by plotting the results of a
few calculations using one of these methods in coordinates of the appropriate
generalized strain (¢ for large impactors, e* for small impactors) vs. the
mass ratio M o§er the range of M of interest. These plotted points may then

be connected to form the design curve.
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V. SUMMARY

In this report, a method for generating a design curve which predicts
the peak response of a structufe éubjected té low-velocity impact has been
presented. Only a few experiments or analytical calculations are required
to construct such a curve for a given type of structure. The importance of
such a curve is that ali‘impact cases; involving various impact velocities,
structural dimensions, and material properties, fall on the same curve within
a variation tolerable to the deéigner.

To facilitate our study, we have divided all impacts into two regimes,
large and small impactors, each of which exhibits different kinematic behavior.
Specifically, massive‘impactofs have been observed to produce multiple impacts,
the peak response of the structure depending on the initial kinetic energy of
the impactor; in contrast, small impactors strike the structure only once,
the maximum response being governed chiefly by the impactor's initial momen-
tum and by contact effects at the impact point. These differences in impact
response are accounted for in the distinct forms of the design curves for each
domain.

Design curves have been developed here for predicting the impact response
of simply supported beams and simply supported and clamped-edge anisotropic
plates. These curves have been constructed using both results of analytical
solutions and data from iﬁpact experiments. Inaddition, detailed procedures
have been described for using the design curves presented in this report, as

well as for generating new curves for structures not treated here.
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APPENDIX A

STATIC SOLUTION OF A

T SIMPLY SUPPORTED ORTHEOTROPIC PLATE

‘In this appendix, we will present the details of the de-
‘rivation of the constants K; and d12 for the central transverse
impact of a simply supported orthotropic plate. As explained in
the main text, these constants are needed for developing the design
curve.‘

The static deflection of such a plate due to an arbitrary
load distribution p (x,y) is, according to Timoshenko and Woinowsky-~

Krieger 7137,

R . 74
o oo sin X op, E2L
S5
wiexy) = m ¥ #%s r # ¢’7‘
4 mal nel 7 L Z/f *

where

and

A
4‘ / (. A7
= - %) 500 22T sin PTY. x o
lon= 27 [ resr g Y
For a centrally applied point load P,

7% mé z 77z
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The maximum deflection occuring at the center of the plate is,

% 4Pab Jal*_!
ww/e ) 2 2 T A

1=(,3,5 521,35

where

We will assume that

7=70 0

Coi = mE+ 2;;»;%727 v‘w?"

t=(Dy%

Therefore, recalling that

so that

where

K1 = P/wl
we have
_ 7 ¥ Dy
4\2
A
where

£ly)= 2 > —C—’L

=1, 3,5 bl s H
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The tensile strain in the x-direction due to bending is
-2
o W
x 2x%
which will have its maximum value at
(x,y,2z) = (a/2, b/2, h/2)

We will derive the relationship between the strain at this point €

2
and the maximum deflection.
<
. b 2w
2”2 % x=a/2, y=4/2
.2/%
(25D
(A7)
where oo 00 mz
é(?) = Z 7 fy
m=1,3,§ a3, 7Y
Substituting for P, we obtain
2K, 4 /&9 7
= —/ 7, /iﬁ 7
52. W_ZDK | é 2 /) / .

so that . 2
7 D
2K, (2/8)% (5)

The approximation assumption used above, eq. (A2), has been

d/z =

suggested by Timoshenko and Woinowsky~Kriéger [13] for simplifying

the mathematics of several plate-bending problems and is exact for the
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.case of an isotropic plate. The advantage of this assumption is to
reduce the parameters for describing the geometry and anisotropy of
the plate to a single quantity, n . For the composite plate on which
the impact experiments were performed, the computed values.are
H=Dy, + 2 Dge = 1484.6 N-m
DD, = HyyDy; = 1301.2 N-m

a difference of 14%. ' s
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APPENDIX B

STATIC DEFLECTION OF A CLAMPED RECTANGULAR

ORTHOTROPIC PLATE DUE TO A CENTRAL POINT LOAD

In constructing an impact design curve for a particular
structure according to the generalized one-degree-of-freedom model
presented in the main text, it is necessary to know the relation-
ships between load, deflection, and strain in the parallel static
problem for the structure of interest. However, in the case of a
clamped rectangular orthotropic plate, a review of recent literature
indicates that an exact solution for the static deflection due to
a centrally applied concentrated load does not exist. 1In fact, the
most advanced related solutions found in the literature include a
single~term Ritz soclution of the case with uniform load (see
Lekhnitskii E103 or Ashton and Whi;ney {jM]A ) and an exact so-
Jution of the simply supported case with point load (see Ambartsumyan
[15] ‘or Advanced Composites Design Guide {16} ).

Therefore, in this appendix, the deflection and bending
strain of a centrally 1oaded_clamped—edge rectangular orthotropic
plate are derived from the solution for a similarly loaded and
supported isotropic plate due to Young Bia ; This is accomplished

by reducing the governing equations for both problems to the same
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dimensionless form by making a simplifying assumption suggested by
Timoshenko and Woinowsky-Krieger {13] , and then transforming the
isotropic solution into terms of the dimensionless variables corres-

ponding to the orthotropic case.

Young's Solution

In Young's solution for the static deflection of a clamped
isotropic plate, the solution for a simply supported plate with a
central concentrated load is combined with that for a simply supported
plate with distributed bending moments along the edges. The edge
moments ére then chosen so that the deflection slope vanishes at the
boundaries. The superimposed solution consists of three parts,

w = wl + Wo + w3 (31)

where the first term is the solution for a simply supported rectan-

gular plate.

2 G2
-::—-f A ”m
fa__ . '—‘_, Zoank, A, = (o5l —— :V
27D, 05 2o54 “om

g RTY 47 ., BTEY | Fwd iy
- Sk —E-Z —~ Zanl oq,, —-fz.s‘/»;/v a'/ * Wd) 74 -—2‘-

(B2)

w, =

where

mTh
Za

/0 .&1'7'&
Cpp =

The other two terms are the deflections of a simply supported plate

¢9Cg7==

with moments applied along the pairs of edges y = + b/2 and x = + a/2,
respectively.
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-1
;,4 )z X

2 7 /2 gc%‘/;dm A

[%”ZS/%A %’Z — Oy éy;,{,’dm A %’Z]

W, =

®3)

and
ﬁv-/

P, O mory
B 2D T g, Y

[mr"x:/ﬁé _‘f’f___—ﬂ% z‘mm/;,,,, cosl) /er] |
: B4

The edge moments corresponding to Vo and w3 are

%‘/ 12277°X
Whsine PZ ) ¥t
'—"';-/-‘ | V2,
(/V/X)x-v‘d/g /DZ //) E,é’afj
i ®6)

in which the coefficients A and'Bm are determined from the condition
that the slope at the boundaries is zero. Young has computed approxi-
mate values of the first few of these coefficients for several values

of the aspect ratio (b/a).
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Modified Young's Solution

In using the solution for.static deflection to construct a
design curve for impact response, we are interested in the relation-
ship between strain and deflection. In Young's solution ag described
above, differentiation of the term wy (twice) to obtain an expression
for bending strain leads to an infinite series which is divergent.
To avoid this difficulty, an alternate solution, Navier's solution,
which yields a bounded value of bending strain, is substituted for w

Thus, we instead let

77X ’7’7'

1-

LFad KOS~ &
W/: W'siD /é) /% Z

F
é
(B87)

Transformation to Orthotropic Plate

The governing diffgrential equation for the.deflection w of

N

an isotropic plate subjected to a lateral distributed load q(x,y) is

4 4 ¢
X% . 2 s . 2w g%, )
2x* 2x22/z ?/" D

(B38)

Letting X = X/a, §.= y/b, and w = w/a, this equation may be expressed

as

‘o _ g
BW"*Z 4\2 277 2\F27 7 a

-+ =

2xf 4 ’2;?“/7‘* $é/) 2xv D
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Likewise, the governing equation for an orthotropic plate

&

(810)

may be expressed in terms of the same dimensionless variables as

?k‘%* 722‘32/72 7 '2/"” Dk

_ 3
>4 P Y 2 2% g4

(B11)
where
2 /D
()Y 5
)7 D
_ (B12)

and where it is assumed that H = VDny ,.
Note the similarity between eqs. (B9) and (B11). The so-
lution of Eq. (B9) is of the form
w=£( [a/b) 2, qa3/DX, X,¥)
(B13)

and the solution of eq. (B1ll) is the same function but involving

different dimensionless parameters,

w = £( nos qa3/Dx, X,¥)

(®B14)

Now eq. (B13) may be obtained by simply writing the known solution,
egs. (B1l), (B3), (B4), and (87), of the isotropic case in terms of

the dimensionless variables x, y and w. Then, substitution of n for
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(a/b)2 and of qa3/DX for qa3/D yields eq. (Bl4), which is the solution

of eq. (Bll). Finally, by returning eq. (Bl4) so obtained to dimen-

sional variables x, y, and w, we obtain thersolution of the orthotropic

equation. (B10).

" The terms to the right of the equals signs in eqs. (B9) and
(Bll) represent dimensionless forcing funckions for an arbitrary dis-
tributed load q(x,y), anﬂ have -the form‘a.= qa3/D. In the case of a
uniformly distributed load, q(x,y) = qps we would have q = qoé3/D, or,

" in terms of total load P = q,ab, E. Pa2/bD. This suggests that in

the case of a concentrated load P the dimensionless forcing function is

also E-= Pa2/bD for the isotropic case, or H'= Pa2/bDX for the ortho-

tropic case. Therefore, in obtaining eq. (Bl4) from eq. (B13), Paz/be

is substituted for PaZ/bD.

)

For example, equation (B7) may be written in terms of dimen-

sionless variables as -

=W 4/042 005 mMTE cos Wiy

RS [y

(B15)

This represents a portion of the solution to eq. (B13).

Substitute n for (a/b)2 and (Paz/bDX) for (Paz/bD) to obtain

7 - 4Fa2 Z CoS mTR oS nmry
/
"‘é&x [m2 ¢ n27_7"'
(B16)
which represents a protion of'eq.v(Blé)._ Rewriting this equation in
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terms of dimensional variables yields the final solution for the ortho-

tropic case.

’ o5 2
W 4de Z Z &’05 eﬂ 7
x [2+ 4 ?]

(B17)
Similarly, from egs. (B3) and (B4), we obtain
.3 =t
W, = "’Pd / Z /"/) 2 ros mmx
- < g ”
4 -2?77”‘69‘12x 765- M /57.5635746k2” 4
/?777‘}’ T 4T
S "—'fZ ; ——-;Z
[ lﬁé 7 : Méhéd’mmfé Jﬁlﬁ}- (318)

w. - =7 B, ~/)2 }”'7/
2T 270 777 O g P 4
: mz—vfzx é murys X y: ﬁ,ﬂ-@
A A a (B19)
By assembling eqs. (Bl7), (B18) and (B19) according to
eq. (Bl), we obtain the solution for the deflection of a fectangular
clamped-edge orthotropic plate subjected to a ceﬁtrally applied con-
centrated load. The coefficients Am and Bm, whiEh are functions of
(a/b) in the ‘isotropic case, are now functions of )z.
Evaluating the deflection solution at the center of the
plate (x = o, y = O),'we obtain the maximum deflecﬁion of the plate

which may be expressed as

Wirax = A Dx //) - (820)
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so that
6Dk
K= 2340
(B21)
where ;(}“ _ i S“ Z [}272:*”2 J 2
3 / 774 o l 7
/ [~/ 5" /' Land of
277"2 7 )37 m*= # ” J7 X p3
Loandy /5
+3, ay 7&]
cash [owm 522)

(B23)
The maximum bending strain occurs at the point directly opposite the

load and may be expressed as

E. =LA L0)P

max é, DX.
where 7[/7) “;-zfz- Z‘ Z /?72[/772"/'}7 27-7‘.2
/ 2l Hi OCm
-+4—7:_;§/./) z [,4”7 &, é‘.’;_{__?‘f__

Cosly &
2 =By Can, ﬂ.,,]

7:. 5?54%»,

(824)

®25)

]

)
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Combining eqs. (B20) and (B24) we obtain

Wnax _ 22 5

CE."m ax

), =

(B26)
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APPENDIX ¢

COMPUTER PROGRAM FOR CALCULATING

TIMOSHENKO SOLUTION OF PLATE IMPACT

This appendix presents a listing of the FORTRAN computer program,
.named SMINC3, for calculating ﬁhe Timoshenko small-increment solution
of the centrél transverse impact of a rectangular orthotropic plate,
Eqe (40).

The program as listed is set up to solve an impact problem having
thé following parameters:

v = 2.45 m/sec

axbxh=171 x 349 x 7.1 mm
‘m, = 0.660 kg

0.816 kg

sl

2

The plate bending stiffnesses, computed according to the Whitnéy—

m

Pagano (1970) anisotropic plate theory, are:

D,; = 680.4 N-m

Dy, = 473.2 N-n

D,, = 2488.8 N-m

Dgg = 505.7 N-m

Dig = Dyg = -49.1 N-m ,

A = Age = 2.687 x 10" N/m

The plate is treated as specially orthotropic in bending and the D16
and D26 terms are neglected.
The program itself calculates the value of the Hertzian contact

stiffness constant k2 based on supplied values of isotropic elastic
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properties of the plate and impactor. The values used are:

: E= 9.8 x 10° N/m2
plate (Gr/Ep) '
v = 0.3
E=2.1x% 10" N/m?
impactor (steel)
v =0.33

The contact radius of the impactor is 25.4 mm.

- 101
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SMINC3 == PLATE IMPACT ‘
OMPUTATION OF TIMOSHENKO=TYPE SMALL=INCREMENT SOLUTION OF HERTZIAN 1
IMPACT OF A SIMPLY SUPPUORTED ORTHOTROPIC RECTANGULAR PLATE
MODIFIED SUN & CHATTOPADHYAY METHOD
DT = TIME INCREMENT
NDT = NO. OF TIME INCREMENTS CALCULATED
TOL = TOLERANCE OF ERROR IN NONLINEAR SOLUTION
V = IMPACT VELOCITY
XAy YBy H = DIMENSIONS OF PLATE IN Xs Yy Z DIRECTIONS
Mi, M2 = MASS OF PLATE, IMPACTOR
Ely E2 = ELASTIC MODULUS OF PLATE, IMPACTOR J
PR1l,y PR2 = POISSON?'S RATIO OF PLATE, IMPACTOR
NHM, NHM « NUMBER OF VIBRATION MODFS CONSIDERED
K2 = HERTZIAN CONTACT STIFFNESS a
XNXy YNY = INITIAL STRESSES IN X,Y DIRECTIONS
REAL LoMLoM2,K2,11140L124113,L22,1.23,1L33
DIMENSION F{5000)4GW{5000),GXX{5000),6YY{5009)
C e o R ok e PROBLEM DATA e % o e e ok ok ol ot o ok oo ek ool o s o sk o ok o o e ok o i o ok kol ok ok -
NHM=25§
NHN=25
NDT=100
TOL=1.0E=05
DT=1.0E=06
XNX=0.
YNY=0,
D11=680.4
D12=473.2
D22=2488.8 |
D66=505.7 [
A44=2,.687E O7
A55=A44
XNX=0.
YNY=0.
XA=0.,171
YB=0.349
H=000071
M1=0,660
M2=0,816
R1=0.0254
PR1=0.3
PR2=0.33 -
£1=9.8E 09
£2=2.10E 11
V=2.45
€ ek et e ol e oo oo e otk ol ool o sk ook ok e s ok s ofe o o e s o s ke sl o o o o ke ok ok o o ol o o o -
I=H/ 2.
PI=3.,14159265398
1901 FORMAT(4X,’N',8Xy'TIME"14X,'FORCE"IZXg'APPROACH'leXg'DEFLECT[UN
17 910Xe *STRAIN X'y 10X, *STRAIN Y* ,10X,*STRAIN XY?)
DELI={1l.=PR1%%2)/E1/P1
DEL2={1l.=PR2%%2)/E2/PI
K2=4-%SQRT(RL)/(DEL14DEL2)/7P1/3.
CAY=P[%%2/12.
A44=A44%CAY
AS55=A55%CAY
B=DT%%2/3,0/M2
C= 4,0/M1 102
P=M1/XA/YB , .

OO0 O0
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PRINT1001
CALCULATE NATURAL FREQUENCIES OF PLATE
DO90K=1,NDT
GWIK)=0.
GXX{K)=0.
90 GYY(K)=0.
DO24TM=1, NHM, 2
TERMA=M*P T /XA
TERMA2=TERMA%X2
L13=A55%TERMA
DO24TN=1,NHNy2
TERMB=N*PI/YB
TERMB2=TERMB#**2
x L 11=D11*TERMA2+ D66XTERMB2+ASS
L12={D12+D66)*TERMAXTERMS
L22=066%¥TERMA2+ D22 *TERMB2 +A%4
L23=A44*TERMB
- 133={A55+XNX)*TERMA2+( A44+YNY ) *TERMB2
Q=L11%L22=L 12%%2 .
DETERM=Q#*L 3342, %L 1 2% 23%L 13=122%L 13%%2=1 1 1 %L 23%%2
AC={L12%L23=122%L13) /Q*TERMA
BC={1L12*L13=L11%1L23)/Q*TERMB
OMEGA2=DETERM/Q/P
OMEGA=SQRTIOMEGA2) ,
IF{{MoEQel) «AND.{N.EQ.1))PRINT1002,0MEGA
1002 FORMAT{? OMEGA,1,1 = ',E15.8)
| TERM1=DT*OMEGA
C2=1.0
DO247K=1, NDT
C1=C2 :
C2=COS{K*TERM1)
AAA={CL=C2)/OMEGA2
CONSTRUCT TABLES OF SUMMATION FUNCTIONS
GHIK)=GWIK) +AAA
GXX(KI=GXX{K)+AAA%AC
247 GYY{K)=GYY{K)+AAA%XBC
P=B+C*GW{1)
_Q=10/3'
‘5320/3.
DO190ON=1,NDT
. CREATE HEADINGS FOR DATA AT TOP OF EVERY PAGE
IF{MOD{N,61).NE.D)GOTOTO
1003 FORMAT{1H1)
PRINT1003
PRINTLOO1
70 T=N*DT
A=V%T
IF(N.EQ.1)GOTO14
BUM=0.
NM1=N=1
SUMI=0.
SUM=0.
DOS53=14NM1
K=NeJ
R=K .
SUMI=F{J)=SUMI
SUM=SUM#R*SUMI

5 BUM=BUM+F{J)*GW{K+1) .
103
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A=A=C*BUM

A=A=DT*¥2%{ 2, %SUM=SUMI /3. )/M2
COMPUTE SOLUTION FOR F{N) USING NEWTON'S ITERATIVE 'METHOD
6071013
14 FNEW=SQRT{A%%3) /K2
13 FN=FNEW
B=SIGN{Lle0sFN}/K2%%2m3  O%A%*P*%2
FFN=P*%3%FN*%3 +BkFN%%*2
1 #3,0%A%%K2%kPHFNmA%RX]
FPFN=3. O*P**B*FN**Z*Z.O*B*FN*B-O*A**Z*P
82 FNEW=FN=FFN/FPFN
ERROR=ABS{{FNEW=FN)/FN)
IF{ERROR.GT.TOLIGOTO13
IF{N.GT.1)G0OTO10
CHECK THAT F{1) IS POSITIVE
IF{FNEW.GT.0.)G0OTO10
FNEW==FNEW
GOT013
10 F{N)=FNEW
IF{FNEWLLT.0.)F{N)=
CALCULATE STRAIN AND DEFLECTION
W=0.
PSIXX=0.
PSIYY=0.
D021J=1,N
K=N=J+1
W=WeF{J)*GWIK)
PSIXX=PSIXX#+F{JI*XGXX{K)
21 PSIYY=PSIYY#F{J)%GYY(K)
W=W*C
EPSX==PSIXX%C%Z
EPSY==PSIYY%(*%7
GAMMA=0,
ALPHA=SIGN{1+ 0y FNEW)*{ABS(FNEW)/K2)*%S
PRINTIOOOyN;T;F(N)1ALPHA.N,EPSX,EPSY'GAMMA
100 CONTINUE
STOP
1000 FDRMATi1Xsl#v7(3X1E15,8!3
FND
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APPENDIX D

SIMPLY SUPPORTED BEAM

CENTRALLY LOADED BY HALF-SINE PULSE

1

In this appendix are derived expressions for the deflection
and bending strain in a simply supported beam subjected to a half-

sine pulse laterally applied at midspan.

The deflection of a simply supported beam due to an arbitrary

force F(t) applied ét midspan is -
(=L
_ 2 & 1)z g
wixt) = 27 Z (1) 2 gy i |
A% s g L (o1)

/fF/z') Sin &'/,é‘- Z) AT

o

where 2 2 2/ 2
d&%{ =¢ Ia IL
We will consider the case where the applied force is repre-

sented by a half-sine pulée with respect to time.
P sin § o 9<T<T/Y

F-({') = 7[0# z.z 7’../?’ (D2)

o
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Then the solution for eéch‘time domain (during and after the pulse)

may be written in terms of the convolution integral

/'/) 3 LMY

- Sn —
s W . 1

/z;/h f?' .ﬁhd/j(’f—?’)d’{; 74;, o< < 77*/?;

_ 2P
W/X,z‘)—/';;i—z

(D3)
[/ ‘ *
an 0 LEL * ‘
2P & CHE . imx
- oo ”n -
b@’fé( zt) ,‘LAsz s 424[ L
/¢
_/ Sin§T St (E-TIAT, for 2= m/ o0
0
Evaluating the integral, the deflectlon durlng the pulse is given by
2PL2 S T i !
wix, ) = > St ==
/ 4
45[:-/35'14' ke

/.S/M ’{‘t"’ .é_ 5‘/;44// zQ s ﬁez’--:‘??/}?
B=%/%, | (3)

If g= iz, however, the denominator of this expression is zero, and
the result is undefined. In this case, w = i2 = Bwy = &; for a
steédy—state vibration problem, this would corréspond to a resonant
forcing function. For this special case, the following ferm must be

substituted.

2PL° ., i //) ‘,/5/»7 5
W= rier

.—z'z/d, oos it £ cos F,z‘;/»‘? 52)
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After the pulse, the deflection is
-/ z (X
Wix,2) = Zfé s & )¢ n.—z—"
v EZI.=63/5‘/ﬂ-4 )( .
.. v Jp S fo > T/ F
-ﬁm Wt + Sin W (2= T/%) o
. unlessB = iz, in which case the ith term must be replaced by
(+/
. W = ;EZ ;DZL </ I:Z?’ (,/ /c) /a7 A} ffzf
¢ = .
77'45.[ 2/3 (08)
The,stréin due to bending is
2
oz W
[ =T 2
9 X %)
The maximum value of this strain is reached at midspan. If we define

a dimensionless strain as
A m2EL £
ThPL X

(D10)

then the solution in terms of this quantity is

rio ‘2 /5/h ¥ - {_5/}1@-9) d<t<m/s

? /:I?f(ﬁ-ﬂ ¢

=4
Z_.é___/;/nﬁ/‘f-f.s‘m&/ [é-v%;_ﬂ £>T/¢

‘|/:3$‘

(p11)

m>

(D12)
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unless B = iz, in which case the ith term must be replaced by

(

M>
]
A

~ 24 T s ft, £>7/%

/ /.;/» ff—- Flos§t+ Z*éb.r Ftsin2 ff) g<t< 7:»”/;'

(D13)

(D14)

For most problems involving small impactors (large M), the contact

duration is short compared with the fundamental period of beam vi-

bration. Therefore, it is of interest to determine the peak bending

strain when the pulse duration is short. It is observed in this case

that the peak strain occurs after the pulse, that is, in the domain

of eq. (D12), which may be written as

£= Z ———%——a’/n[/ 4, (2~ Z‘)/Zjﬁleg

(=13,

This quantity reaches its maximum at

z‘-—-—+..7_r_

/7B 1

when it has the value

A Z_é__w:

-;3sﬂ-—z 23

which is a function of B only. This function is plotted in Fig.

THEN

pI.
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APPENDIX E
DETATLED RESULTS OF IMPACT EXPERIMENTS

In this appendix, data from all impact experiments conducted at
Drexel and also some reported in the literature are presented in both
tabular and graphical form. For completeness, several figures which
appear in the text have been included in this appendix.

1. Results of Large-Impactor Strain Measurement Experiments

Strain measuring impact tests have been performed on both aluminum
and composite ( graphite-epoxy ) plates. A total of 47 5 experiments
were performed on specimens with clamped edges and 573 on specimens with
simply supported edges.

Index to Large Impactor Design Curves

Clamped Plates Simply Supported Plates
m Figure m Figure
0.074 E12 0.074 E34
0.111 E5 0.111 E27
0.166 E3 0.166 E30
0.189 E15 0.189 E37
0.227 E21 0.227 E43
0.25 E3 0.25. E25
0.30 E18 0.30 E40
04417 E11 0417 E33
0.64 E6 0.64 E28
0.80 E17 0.80 E39
1.0 E1 1.0 E23
1625 E16 125 E35
1.5 E7 156 E29
2.4 E10 24 E32
3e3 E19 3¢3 E41
ko0 E2 4,0 E24
Yoli E20 Lolyq E42
529 E14 529 E36
6.02 E9 6.02 E31
13.51 E13 13.5 E35
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Figure B1, Design curve and experimental data for impact of 'a clamped
aluminum plate (n = 1.0). '
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Figure E2, Design curve and experimental data for impact of
a clamped aluminum plate (n = 4.0).
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Figure Ef, Tezign curve and experimental data for impact of
a clamped aluminum plate (n ='9.0).
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2. Results of Impact-to-Failure Experiments

Each specimen was impacted at a gradually increasing velocity
until damage was detected either by inspection or by use of a hand held
ultrasonic transducer and oscilloscope system.

Thé theoretical failure strain, éf, used in constructing the one-
aegree—of-freedom model design curve is the surface strain obtained
when the strain in the outermost 0° lamina reaches the failure strain

supplied by the manufacturer (0.0112).
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TABLE E5:

NADC-7 8259 60

IMPACT FAILURE EXPERIMENTS PERFORMED ON

COMPOSITE BEAM SPECIMENS

Impact Rﬁi?s Impact Failure Dim;g;ig:lesa
atio, . ) _
Mass, Mem. / ’ Velocity, | g.curred Velocity,
=m, /m
m, (kg) | 1/™2 | v (m/sec 7= vh/az
S 5.63 No 0.00333
0.1095 0.0562 :
6.32 No 0.00374
6.77 No 0.00400 .
6.95 No 0.00411
7.90 No 0.00467
7.00 Yes - 0.00414
7.35 Yes 0.00435
7.53 Yes 0.00445
7.65 Yes 0.00452
8.25 Yes 0.00488
8.66 Yes 0.00512
0.0566 ' 0.1089 9.31 No 0.00550
- : ' 9.42 No 0.00557
10.30 No 0.00609
11.20 No 0.00662
11..13 Yes 0.00658
11.27 Yes 0.00666
11.47 Yes 0.00678
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TABLE E5 . (continued)

Impact Mass Impact Failure |Dimensionles
Mass, Ratio, |Velocity, Impact
Occurred Veloeity’
m, (kg) M=m, /m v (m/sec) —
2 ¥ 1772 v = vh/a2
0.0566 0.1089 11.72 Yes 0.00693
12.97 Yes 0.00767
13.03 No 0.00770
0.0280 0.220
15.45 No 0.00913
17.59 Yes 0.01040
19.17 Yes 0.01133
20.12 Yes 0.01190
23.07 Yes 0.01364
24,07 Yes 0.01423
24.10 Yes 0.01425
19.05 No 0.01126
0.01434 0.429
21.17 No 0.01252
21.97 No 0.01299
22.66 Yes 0.01340
23.39 Yes 0.01383
26.24 Yes 0.01551
28.42 Yes 0.01680
33.43 Yes 0.01976
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Clamped Boundary Conditions
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-One~degree~-of-freedom model, z;ef/ﬁ

EUFFEL & ESSER CO. MADE IN USA.

Impact—to—failure Experiments :

Clamped Plates

HOE*&OGARI'THMIC 2 x 2 CYCLE>

Simply - Supported Plates

.1 15 2 25 3 A5 S ,7,891{ ;

) 15 2 25 3 4 5 6 7 809:,
: : o :
[ ‘ Figure'EA8, Critical Impact Velocity Curve for M
- Clamped and Simply Supported Plates
Impacted by Large Masses. )
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3. Results of Small Impactor Strain Measuring Experiments

Plate specimens were impacted by 1"(25mm) radii aluminum projectiles
fired from an air gun. Impactor velocities were recorded using a photo-
diode system. Plate strain was recorded using type EA-13-062TT rosettes

and a type 565 dual beam oscilloscope.
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TABLE 7
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BEAMS IMPACTED BY SMALI MASSES

DATA FROM EXPERIMENTS ON SIMPLY SUPPORTED

Beam Mass Mass Impact Contact |Generalized €
o ’ Ratio, Velocity, |Stiffness,| Strain, /-
Dimensions, 3/2. |- 2
and Material Mem) /m, [v (m/sec) |k, (N/m™ %€ = ea®/hv
27.0 6.37  |2:466x101%] 0.0795 0.0184
0.389 kg :
" 13.17 " 0.0814 0.0175
197 x 16.x 16 mm -
: 13.8 8.72 " 0.1229 .0315
steel " 12.19 " 0.1489 0.0369
6.85 5.49 " 0.2388 0.0739
" 8.53 " 0.2512 .0743
3.54 6.28 " 0.3224 .1123
" 9.33 " 0.3493 L1171
' " . .
0.601 kg 41.8 10.88 0.0800 .01142
. 11}
305 x 16 x 16 mm 14.87 " 0.0790 0.01092
- 23.8 7.92 " 0.1033 .01703
steel v | 11.06 " 0.1076 01716 -
11.2 7.50 " 0.1766 L0341
" 12.37 " 0.1800 .0330
5.88 6.16 " 0.2478 0554
" 8.11 " 0.2662 0.0579
0.1096 kg, aluminual 1-93 4.39 " 0.475 0.1689
152 x 20 x 12.7 mm " 6.92 " 0.462 .1569
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TABLEE? (continued)

B M Mass Impact Contact |Generalized Py
cam Tass, Ratio, Velocity,| Stiffness Strain, —
Dimensions,
d M ial 3/2 - . 2 /5;
and Materia M=ml/m2 v (m/sec) kz(N/m )le = ea”/hv
41.8 10.58 |1.744x10'°| 0.0760 0.01166
0.601 kg :
)
11} n I/
' 305 x 16 x 16 mm 12.71 0.0761 0.01146
23.8 9.42 " 0.1242 0.0216
steel  © " 12.53 " 0.1235 0.0208
11.2 5.33 " 0.1534 0.0328
" 12.01 " 0.1611 0.0317
5.88 5.39 " 0.2345 0.0570 'l
" 7.71 " 0.2799 0.0656
0.360 kg 25.0 11.31 2.466x1010 0.0868 0.0203
. n ) " : -
185 x 16 x 16 mm 14.42 0.0978 0.0223
12.8 8.11 " 0.1523 0.0421
steel
' " 10.70 " 1 0.1647 0.0442
6.34 8.20 " 0.2563 0.0814
" 10.52 " 0.2434 10.0754 g)
3.27 5,73 | ¢ 0.3252 0.1221
" 8.60 " 0.3203 0.1155 )
0.1074 kg, steel 1.89 3.90 " 0.458 0.2222
98 x 15 x 9 mm " 6.40 " "I 0.465 0.2147
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TABLE ES .

DATA FROM GOLDSMITH (1960)

Beam Mass, - Mass | Impact | Contact [Generalized Py
Dimensions, Ratio, | Velocity,| Stiffness{ Strain, . —
and Material 32|l 2 /B*
: M=m1/m2 1 v (m/sec) kz(N/m )| € = ea“/hv
10 '
3.66 kg 6.44 0.405 |3.487x10 - 0.262 0.0563
. ' ' " : " B
762 x 25.4 x 25.4 1.338 0.286 0.0500
mm "o 2.54 " 0.311 0.0510
steel 2.12 0.408 " 0.520 0.1278
' " 1.271 " 10.564 0.1237
" 1.777 "o ~0.584 10.1239
v ' 10 .
: 4,894x%10 0.148 0.00932
56.9 kg 57.0 2.40 )
. 23.7 2.47 " 0.247 0.01855
2900 x 50 x 50 mm
' " 3.00 " 0.237 0.01740
steel — -
" 3.40 " 0.260 0.01886
" 4.75 " 0.239 0.01676
11.41 2.40 " 0.365 0.03173
6.34 2.40 "o 0.420 0.04107
3.66 kg, steel | 10 . v
724x25. 4%25.4 mm- 55.0 1.725 |1.744%10 : 0.0802 0.01065
2.170 kg, steel ' 10 v o
762x19x19 mm 266. 45,7 1.233x10 0.0268 .]0.001486
1.447 kg, steel -
762x19x12.7 min 177.2 45.7 " 0.0359 10.001625
'0.965 kg, steel ' : A .
762x12. 7x12.7 mm 118.2 - 45.7 " 0.0713f 0.003228
poh s 7 sel 59.1 45.7 " 0.1578 |0.007143
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TABLE E9

Impact of Composite Plates by Small Masses

¢ Segmen) M iy 10 ‘| s A e”
F— /6.9 G000 26,8 4,38 vo,d‘W/
3600 26.8 “, 38 0.0923
3000 24.8 3.7 | o045
F /600 | 477 | 3.80 | 00357
I /.9 /100 /7.7 350 | 00247
s000 | 24.8 380 | 0.048
3ex 24.7 3.75 0,068%
| 3000 26,8 | 403 0.6/8/
| £7 32.3 4000 26,8 6.03 6, 024!
¢ /(00 /8,3 5,57 0.0/03
250 /18,3 8,57 00090
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TABLE E10

Data From Schwieger

M E ppax = 12 v mfs | B & ™
/70 0.25 /8,7 0.0%28
354 0,80 2.5 0,0388
33/ 0,75 23.3 0.0358
“4.47 730 /.00 25.0 0,039
907 /28 25.8 0.033/
//50 /.50 261 0,6327
1283 175 | 216 | 5.03/3
1482 2,00 28.3 0,0308
332 6,50 3/.8 0,0237
486 0,75 34.5 0,022\
663 /.00 36.6 20,0213
/5.5 | 774 .25 382 | 0,0/90
773 /.50 37.7 0.0/92
77 175 2,9 0.01677
/177 200 | 420 | 0.0/87
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4. Typical Strain vs. Time Oscilloscope Traces for Impact of Clamped and

Simply Supported Orthotropic Plates by Large Impactors.

'

210 N




NADC-78259 60

Scale:
2000 y =/div
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a) Simply Supported

Scale:
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4000P ;;ydiv |
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aARdE
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b) Clamped

Figure E53: Impact of Specimen B3, M = 0.21, Impact Velocity = 1.73 m/s
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Scale:
2000 p —=/div
m

vertical

0.5 msec/div
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a) Simply Supported

8/16/77 H#

‘AH_,*AS\\ Scale:

4000 u ==/div
vertical
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b) Clamped

Figure E54: Impact of Specimen B3, M = 0.21, Impact Velocity = 2.45 m/sec
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Figure E55: Impact of Specimen B7, M = 2.38, Impact Velocity = 1.73
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Figure E56: Impact of Specimen B7, M = 2,38, Impact Velocity = 2.49 m/sec. : :
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Appendix F

The Effect of the Approximation H = ”DllD22 on the

Predicted Impact Respoﬁse of an Orthotropic Plate

To simplify the analysis of the bending and vibration of specially ortho~
tropic plates, Timoshenko and Woinowsky-Krieger [13] have suggested the approx-
imation

H = {D,,D,, (F1)
where H is defined as

H = D12 + 2D66

An advantage of using this assumption is that the equation governing bending

of an orthotropic plate may be transformed, through a simple change in variables,
inté an equation similar to the equation governing bending of an isotropic plate.
By reversing the transformation, a solution for the deflection of an isotropic
plate may be converted into the corresponding solution for an orthotropic Plate.
This is done in Appendix B for a centrally loaded rectangular plate with clampea
boundary conditions; the approximation (F1) is instrumental in this instance
because no general solution exists for the orthotropic case.

Like all approximations, howevef, application of Eq. (F1) introduces some
error into the solution. 1In this Appendix, we investigate the influence of this
approximation on the strain predicted by the one-degree-of-freedom model of
impact of a simply supported recféngular orthotropic plate. This is done by
deriving the relationship between the generalized strain Ex and the mass ratio M,

both with and without the use of Eq. (F1), and then comparing the results.
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The static deflection of a simply supported rectangular orthotropic plate

due to a central concentrated load P is [10]

sinmsinmsinmsin ar.
_ _4p a b a b
W(X’Y)‘b4zz A 2 2 4
abr mn m mn n
et A I Y
a a™b b

where a and b are the plate dimensions in the x and y directions. If we define
n as in Eq. (16) and
. . ]
VD11D22
then the .maximum deflection, which occurs at the center of the plate, may be

expressed as

Wmax = P/Kl
where
‘rr4 D., b
l(1. = %1 F (l ) (F2)
4a 118N
Fl(Cm) = z Z 3~ o odd
) mn mn
an = m4 + 2m2n:2 ng + n4n2

Similarly, the maximum x-direction bending strain, which also occurs at

the plate center, may be expressed as

ex,max = _"2 D.. b Fz("“)
11
2h a Kl .
= Tr2 D.. b FZ(C’n) Vmax
11
m2
where Fz(i;,n) = Z Z T m,n odd.
mn ~mn

A Bt lh ctomn

it
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Therefore, the strain-deflection constant, defined in Eq. (6), is

2
‘ _ T D11 b 1 3)
12 2h a K, FZ(;,n)

To apply the one-degree-of-freedom impact model to this case, we substitute
Eqs. (F2) and (F3) into Eq. (8) with e = 0 and define the generalized strain Ex

as in Eq. (21) to obtain

- G(m ¥4
- TR ‘

where
FZ(C,n)

VFl(Q,n)

ft

Gl(C,n)

Note that the approximation (F1) corresponds to setting ¢ = 1. Thus, if
this assumption is used, then the approximate relation between Ex and M,

) corresponding to Eq. (22), is

G, (1,n)
Ex = —;§T——- (FS)

Therefore, the correction required to adjust the approximate generalized strain

Ex given by Eq. (F5) to the exact value given by Eq. (F4) is

- Gl(C,ﬂ)
E = 1
) =5 @m
¢
This error is plotted vs. [ for a few values of n in Fig. Fl. Note that
p the magnitude of this error does not exceed 17% for the range of ¢ values

calculated and is less than 9% for most lay-ups commonly used in actual aircraft
structures, which lie in the range 0.60 < ¢ < 1.6. (Lay-ups having C values

outside this range [e.g., £ = 0.31 for unidirectional AS/3501-6] rarely have

practical application as plate structures.) Further, for the range of 7 values
of the plate specimens used in the impact experiments, this error is always less

than 6.5%.
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In Table F1l, the actual values of z, n, and the error in predicted generalized

"NADC-78259 .60

strain E(Ex) for the plate specimens are summarized. The largest value of error
among all of the plates is onl& 5.4%. Therefore, we conclude that the approxi-
mation of Eq. (F1) does not contribute a significant error to the design curve

for impact of simply supﬁorted plates by large impactors. We may i?fer thag a J

similarly small correction is required for orthotropic plates with other boundary

conditions. "
Table F1
Error in Predicted Generalized Strain
for the Plate Impact Specimens
2 D
Plate _ H a 71722 -
: T = = = T E(e )
Numb D n
& 11722 P P x l

B1 1430 0.625 -3.6% 1
B2 A ‘ , 0.164 -4,2
B3 2.39< -3.7
B5 : 0.074 -4.0
B6 5- 29 -5u4
B7 1.38 -3.2
BS . 0.282 -4.1
Bg ' 0. 625 _3.6
Fl 1.252 0.641 -2.2 3
F2 0.168 -2.6 i
F3 2.45 -2.3
F4 . 0.641 -2.2 Y
H1 1.270 1.150 -2.1
H2 ' 0.302 -2.7 ‘
H3 4,41 -3.3
H4 - 1.150 -2.1 '
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